Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy \(A=2^{32}-1\)
2, \(x^2-6x=-9\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(x-3=0\)
\(x=3\)
Vậy \(x=3\)
Bài 2
a. (x-2y)2 =2x-4y
b. (2x^2 +3)2 =4x^2+6
c. (x-2) (x^2+2x+4) = x^3-8 (hằng đẳng thức)
d. (2x-1)3 = 6x-3
Xin lỗi mik chỉ lm ổn bài 2 thôi!
\(a,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=4xy\\ b,\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)=\left(x+y-x+y\right)^2=4y^2\\ c,\left(x^2-1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x^3+1\right)\\ =x^4-x^3+x-1\)
a. (x + y)2 - (x - y)2
= (x + y - x + y)(x + y + x - y)
= 2y . 2x
= 4xy
b. (x + y)2 + (x - y)2 - 2(x + y)(x - y)
= (x2 + 2xy + y2) + (x2 - 2xy + y2) - 2(x2 - y2)
= x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 + 2y2
= x2 + x2 - 2x2 + 2xy - 2xy + y2 + y2 + 2y2
= 4y2
c. (x2 - 1)(x2 - x + 1)
= x4 - x3 + x2 - x2 + x - 1
= x4 - x3 + x - 1
a: \(=\dfrac{\left(x+1\right)\left[\left(3x-2\right)-\left(2x+5\right)\left(x-1\right)\right]}{x+1}\)
=3x-2-2x^2+2x-5x+5
=-2x^2+3
b: \(=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\)
c: =x^3-3x^2+3x-1-x^3-1+9x^2-1
=6x^2+3x-3
\(a,\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]:\left(x+1\right)\)
\(=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x-1\right)\left(x+1\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(3x-2-\left(2x+5\left(x-1\right)\right)\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(3x-2-2x^2+2x-5x+5\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(-2x^2+3\right)\right].\dfrac{1}{x+1}\)
\(=-2x^2+3\)
\(b,\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)\)
\(=\left(2x+1\right)\left[\left(2x+1\right)-2\left(3-x\right)\right]\)
\(=\left(2x+1\right)\left(2x+1-6+2x\right)\)
\(=\left(2x+1\right)\left(4x-5\right)\)
\(c,\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)
\(=x^3-3x^2+3x-1-x^3-1-\left(3x-9x^2+1-3x\right)\)
\(=-3x^2+3x-2-3x+9x^2-1+3x\)
\(=6x^2+3x-3\)
\(A=\dfrac{x^2-2x-3-x^2+x-1+4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3x}{\left(x+1\right)\left(x^2+x+1\right)}\)
\(A=x^2+4x-21-x^2-4x+5=-16\\ B=-2\left(4x^2+20x+25\right)-\left(1-16x^2\right)\\ B=-8x^2-40x-50-1+16x^2=8x^2-40x-51\\ C=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ D=x^3+1-\left(x^3-1\right)=2\\ E=x^3-3x^2+3x-1-x^3+1-9x^2+1=-12x^2+3x+1\)
\(a,x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
\(a,=x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:
c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)
\(=2^{36}-1\)
b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)
\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)
\(=x^8.\left(-4\right)\)
\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)