Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình viết nhầm bài là:
Rút gọn biểu thức: \(A = {{12} \over√3+√2+√5}\)
Ta có: \(\left(\sqrt{12}-2\sqrt{18}+5\sqrt{3}\right)\cdot\sqrt{3}+5\sqrt{6}\)
\(=\left(2\sqrt{3}-6\sqrt{3}+5\sqrt{3}\right)\cdot\sqrt{3}+5\sqrt{6}\)
\(=3+5\sqrt{6}\)
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
a ⇒A=\(4\sqrt{4\times3}+3\sqrt{25\times3}-5\sqrt{16\times3}=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}=3\sqrt{3}\)
b ĐKXĐ x≥2 ⇔\(\sqrt{x-2}+3\sqrt{x-2}=16\Leftrightarrow4\sqrt{x-2}=16\Leftrightarrow\sqrt{x-2}=4\Rightarrow x-2=16\Leftrightarrow x=18\)
a. \(A=4\sqrt{12}+3\sqrt{75}-5\sqrt{48}\)
\(=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}\)
\(=3\sqrt{3}\)
b. \(\sqrt{x-2}-\sqrt{9x-18}=16\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{9\left(x-2\right)}=16\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{x-2}=16\)
\(\Leftrightarrow-2\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}=-8\) ( Vô lý )
Vậy PT vô nghiệm
\(5\sqrt{x}-\frac{\left(x+10\sqrt{x}+25\right)\left(\sqrt{x}-5\right)}{x-25}=5\sqrt{x}-\frac{\left(\sqrt{x}+5\right)^2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=5\sqrt{x}-\left(\sqrt{x}+5\right)=4\sqrt{x}-5\)
\(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}=\orbr{\begin{cases}\frac{x-2}{x-2}\left(x>2\right)\\\frac{2-x}{x-2}\left(x< 2\right)\end{cases}=\orbr{\begin{cases}1\left(x>2\right)\\-1\left(x< 2\right)\end{cases}}}\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
a: \(=3\sqrt{3}-2\sqrt{3}+4\sqrt{3}-5\sqrt{3}=2\sqrt{3}\)
1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}+2-\sqrt{5}\)
\(=4\)
2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)
\(=3-\sqrt{3}+3+\sqrt{3}\)
\(=6\)
\(A=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}}{3-2}-\sqrt{3}=\sqrt{3}-\sqrt{2}-\sqrt{3}\)
\(=-\sqrt{2}\)
\(x=\frac{12}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
=> \(x^2=\left(\frac{12}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\right)^2\)
<=> \(x^2=\frac{144}{3+2+5+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
<=> \(x^2=\frac{144}{2\left(5+\sqrt{6}+\sqrt{10}+\sqrt{15}\right)}\)
<=> \(x^2=\frac{144}{2\left[\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)+\sqrt{3}\left(\sqrt{5}+\sqrt{2}\right)\right]}\)
<=> \(x^2=\frac{144}{2\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
<=> \(x^2=\frac{72}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
=> \(x=\frac{6\sqrt{2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}+\sqrt{3}\right)}}\)