\(\sqrt{\frac{2}{8-3\sqrt{7}}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(\sqrt{\frac{2}{8-3\sqrt{7}}}=\frac{2\left(8+3\sqrt{7}\right)}{\left(8-3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}=2\left(8+3\sqrt{7}\right)\)

1 tháng 10 2019

\(A=\frac{1}{\sqrt{11-2\sqrt{30}}}-\frac{3}{\sqrt{7-2\sqrt{10}}}+\frac{4}{\sqrt{8+4\sqrt{3}}}\)

\(=\frac{1}{\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}-\frac{3}{\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}}+\frac{2}{\sqrt{4+2\sqrt{3}}}\)

\(=\frac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\frac{3}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{2}{\sqrt{3}+1}\)

\(=\frac{6-5}{\sqrt{6}-\sqrt{5}}-\frac{5-2}{\sqrt{5}-\sqrt{2}}+\frac{3-1}{\sqrt{3}+1}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\sqrt{6}-\sqrt{5}}-\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}\)

\(=\sqrt{6}+\sqrt{5}-\sqrt{5}+\sqrt{2}+\sqrt{3}+1=\sqrt{6}+\sqrt{2}+\sqrt{3}+1\)

\(=\sqrt{2}\left(\sqrt{3}+1\right)+\sqrt{3}+1=\left(\sqrt{3}+1\right)\left(\sqrt{2}+1\right)\)

23 tháng 4 2021

\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

23 tháng 4 2021

a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

31 tháng 5 2018

Tu bieu thuc \(\Leftrightarrow\frac{3.\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{14\sqrt{7}}{7}+|\sqrt{7}-2|\)

                    \(\Leftrightarrow3\sqrt{7}+6-2\sqrt{7}+\sqrt{7}-2=2\sqrt{7}+4\)

3 tháng 9 2020

Ta đặt: \(A=\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\right)^2\)

<=> \(A^2=\sqrt{7}-\sqrt{3}-2\sqrt{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}+\sqrt{7}+\sqrt{3}\)

<=> \(A^2=2\sqrt{7}-2\sqrt{7-3}\)

<=> \(A^2=2\sqrt{7}-2\sqrt{4}=2\left(\sqrt{7}-2\right)\)

=> \(A=\sqrt{2\left(\sqrt{7}-2\right)}\)

Thay vào ta được:

\(\frac{\sqrt{2\left(\sqrt{7}-2\right)}}{\sqrt{\sqrt{7}-2}}=\sqrt{2}\)

24 tháng 7 2016

\(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{4}+\sqrt{2}\right)-\left(\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{2+\sqrt{2}-\sqrt{3}}\)  ( Tách 4 thành \(\sqrt{4}+\sqrt{4}\) )

\(=\frac{\sqrt{2}\left(\sqrt{2}+1\right)-\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{3}+2\right)\left(\sqrt{2}+1\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\sqrt{2}+1\)

24 tháng 7 2016

cảm ơn bạn nhiều nha!!!!!!!

 

24 tháng 7 2016

\(=\frac{2+\sqrt{2}-\sqrt{3}+2-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}=1+\frac{\sqrt{2}\left(2+\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}=1+\sqrt{2}\)

31 tháng 3 2020

Ta có:

\(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{2+\sqrt{2}-\sqrt{3}+2-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\frac{\sqrt{2}(2+\sqrt{2}-\sqrt{3})}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\sqrt{2}\)

Vậy \(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}=1+\sqrt{2}\)