Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
;))) tớ nhớ dạng RGBT căn bậc 3 lớp 9 nhì :)))????
\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x+1}}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\frac{2x+1-\sqrt{x}\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x+1}\right)}.\left(1-2\sqrt{x}+x\right)\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}-\frac{2\sqrt{x}-1}{\sqrt{x}+2}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{x+2\sqrt{x}}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x+2}\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\frac{\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-4\right)}\)
\(A=\frac{\sqrt{x}-2}{x-4}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có :
\(A=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{x-1}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+1}\)
\(=1\)
Vậy...
b/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có :
\(B=\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}+6\right)\left(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}-3\right)\)
\(=\left(\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+6\right)\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-3\right)\)
\(=\left(\sqrt{x}-2+6\right)\left(\sqrt{x}-1-3\right)\)
\(=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)\)
\(=x-16\)
Vậy..
c/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có :
\(C=\frac{2\sqrt{x}}{x-1}+\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}-x}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2}{\sqrt{x}}\)
Vậy..
\(ĐKXĐ:x\ne16\)
\(Q=\frac{1+3\sqrt{x}-12}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{3-\sqrt{x}-11}\)
\(=\frac{\left(3\sqrt{x}-11\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}\)
\(\left(\frac{1}{\sqrt{x}-4}+3\right).\frac{x-16}{3-\sqrt{x}-11}=\left(\frac{1}{\sqrt{x}-4}+\frac{3\left(\sqrt{x}-4\right)}{\sqrt{x}-4}\right).\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}\)
\(=\frac{1+3\left(\sqrt{x}-4\right)}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}=\frac{1+3\sqrt{x}-12}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}\)
\(=\frac{3\sqrt{x}-11}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\left(\sqrt{x}+8\right)}=\frac{\left(3\sqrt{x}-11\right)\left(\sqrt{x}+4\right)}{-\left(\sqrt{x}+8\right)}\)