Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}}{3-2}-\sqrt{3}=\sqrt{3}-\sqrt{2}-\sqrt{3}\)
\(=-\sqrt{2}\)
a: =căn 3+căn 5-căn 3=căn5
b: \(=\sqrt{x-2-2\sqrt{x-2}+1}=\sqrt{\left(\sqrt{x-2}-1\right)^2}\)
\(=\left|\sqrt{x-2}-1\right|\)
a.\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}=\left|\sqrt{3}+2\right|=\sqrt{3}+2\)
b.\(\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2\)
c.\(\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}+3\right)^2}=\left|\sqrt{5}+3\right|=\sqrt{5}+3\)
d.\(\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
a: \(=\sqrt{5}-1\)
b: \(=\sqrt{2}-1\)
c: \(=\sqrt{3}+1\)
d: \(=\sqrt{13}+1\)
\(A=\sqrt{2}+\dfrac{1}{\sqrt{3}-1}=\sqrt{2}+\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\sqrt{2}+\dfrac{\sqrt{3}+1}{2}=\dfrac{2\sqrt{2}+\sqrt{3}+1}{2}\)
a) \(\sqrt{36\left(x-5\right)^2}=6\left|x-5\right|\)
\(=6\left(x-5\right)\) (khi \(x\ge5\))
hoặc \(=6\left(5-x\right)\) (khi \(x< 5\))
b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}=\dfrac{1}{2}\left|1-x\right|\)
\(=\dfrac{1}{2}\left(1-x\right)\) (khi \(x\le1\))
hoặc \(=\dfrac{1}{2}\left(x-1\right)\) (khi \(x>1\))
c) \(\sqrt{x^2\left(2x-4\right)^2}=\left|x\right|\left|2x-4\right|\)
\(=x\left(2x-4\right)\) (khi \(x\ge2\))
hoặc \(=x\left(4-2x\right)\) (khi \(0\le x< 2\))
hoặc \(=-x\left(4-2x\right)\) (khi \(x< 0\))
a) Ta có: \(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)
\(=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
b) Ta có: \(B=\dfrac{a-2\sqrt{a}-3}{a-9}\)
\(=\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}+3}\)
c) Ta có: \(C=\sqrt{x-1-2\sqrt{x-2}}\)
\(=\sqrt{x-2-2\cdot\sqrt{x-2}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}\)
\(=\left|\sqrt{x-2}-1\right|\)
`a)A=(x+sqrt5)(x^2+2xsqrt5+5)`
`=(x+sqrt5)/(x+sqrt5)^2=1/(x+sqrt5)`
`b)B=(a-2sqrta-3)/(a-9)(a>=0,a ne 9)`
`=(a+sqrta-3sqrta-3)/(a-9)`
`=((sqrta+1)(sqrta-3))/((sqrta-3)(sqrta+3))`
`=(sqrta+1)/(sqrta+3)`
`c)C=sqrt{x-1-2sqrt{x-2}}(x>=2)`
`=sqrt{x-2-2sqrt{x-2}+1}`
`=sqrt{(sqrt{x-2}-1)^2}`
`=|sqrt(x-2)-1|`
a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)
b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))
\(a,A=7\sqrt{5}+6\sqrt{5}-5\sqrt{5}-6\sqrt{5}=2\sqrt{5}\\ b,B=12-5\cdot2=2\\ c,C=\left[2-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\right]\left[2+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}\right]\\ C=\left(2-\sqrt{7}\right)\left(2+\sqrt{7}\right)=4-7=-3\)