Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
\(M=\dfrac{x+12-15}{x}+\dfrac{y+12-15}{y}+\dfrac{z+12-15}{z}\)
\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)
\(M=1-\dfrac{3}{x}+1-\dfrac{3}{y}+1-\dfrac{3}{z}\)
\(M=3-\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)\)
\(M=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}=\dfrac{3}{4}\)
\(\Rightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{4}\)
\(\Rightarrow3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\le\dfrac{3}{4}\)
\(\Leftrightarrow M\le\dfrac{3}{4}\)
Vậy \(M_{max}=\dfrac{3}{4}\)
Dấu " = " xảy ra khi \(x=y=z=4\)
Bài 2
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
Xét \(\dfrac{a^3+b^3+c^3}{4abc}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{4abc}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}+\dfrac{3}{4}\)
\(=\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)-9\left(ab+bc+ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{9}{4}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{4abc}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}-\dfrac{3}{2}\) (1)
Xét \(\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{1}{30}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\) (2)
Cộng (1) và (2) theo từng vế
\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{225\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}\)
\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{1}{225}}\)
\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge\dfrac{2}{15}\)
\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\ge\dfrac{2}{15}-\dfrac{22}{15}=-\dfrac{4}{3}\)
\(\Leftrightarrow P\ge-\dfrac{4}{3}\)
Vậy \(P_{min}=\dfrac{-4}{3}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Bài 1
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại ta có :
\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)
Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)
Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)
Thiết lập tương tự và thu lại ta có :
\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)
\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=1\)
1, a,\(\left(-7x^2\right)\left(3x^2-x-2\right)\)
\(=-21x^4+7x^3+14x^2\)
\(b,\left(2x^3-3x^2-10x+3\right):\left(x-3\right)\)
2x^3-3x^2-10x+3 x-3 2x^2+3x-1 2x^3-6x^2 - 3x^2-10x+3 3x^2-9x - -x+3 -x+3 - 0
2,\(a,\left(x-3\right)\left(x^2+1\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+x-3x^2-3-x^3+27\)
\(=-3x^2+x+24\)
\(b,\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)
\(=4x^2+4x+1+4x^2-4x+1+8x^2-2\)
\(=24x^2\)
\(3,a,x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
\(b,3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
4, a. Bn kiểm tra lại đề bài nhé
b,\(4x^2-12xy+10y^2\)
\(=\left(4x^2-12xy+9y^2\right)+y^2\)
\(=\left(2x-3y\right)^2+y^2\ge0\forall x,y\)
câu 1.
a. \(=\left(x+y\right)\left(x-5\right)\)
b. \(=\left(x+2y\right)^2\)
c. \(=\left(x-1\right)\left(x-6\right)\)
câu 3.
a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)
Vậy \(minA=2010\Leftrightarrow x=-1\)
b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)
Vì x, y nguyên nên có các TH :
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)
câu 6.
a. giống câu 3
b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)
1. a, | 2x - 3 | + x = 5
<=> | 2x - 3| = 5 - x
<=> \(\left[{}\begin{matrix}2x-3=5-x\\2x-3=-5+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=8\Rightarrow x=\dfrac{8}{3}\\x=-2\end{matrix}\right.\)
b, 3x - 2 +2| x + 3| = 0
Với x \(\ge1\) có:
3x - 2 + 2x + 6 = 0
<=> 5x = -4
<=> \(x=-\dfrac{4}{5}\)
Với x < 1 có:
-3x - 2 - 2x + 6 = 0
<=> -5x = -4
<=> x = \(\dfrac{4}{5}\) thử lại k thỏa mãn
Vậy có 1 gt x tm đề là x = -4/5
c, Tương tự b
Bài 2: gần tương tự bài 1
Bài 3:
a, Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)
đẳng thắc xảy ra khi \(0\le x\le8\)
Vậy A_min = 8 khi.....
b, Áp dụng bđt như ý a ta có:
\(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
đẳng thức xảy ra khi \(2\le x\le5\)
Vậy...............
a)
\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)
\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)
\(\left(x-1\right)^2-2\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2=\left(x-1-x+3\right)^2=2^2=4\)
\(\left(2x+3\right)^2+\left(2x+3\right)\left(2x-6\right)+\left(x-3\right)^2=\left(2x+3\right)^2+2\left(2x+3\right)\left(x-3\right)+\left(x-3\right)^2=\left(2x+3+x-3\right)^2=\left(3x\right)^2=9x^2\)
Bài 1:
\(\left(2x+3\right)^2-\left(2x+3\right)\left(4x-6\right)+\left(2x-3\right)^2+xy\)
\(=\left(2x+3\right)^2-2\cdot\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)
\(=\left(2x+3-2x+3\right)^2+xy\)
\(=xy+36=2\cdot\left(-1\right)+36=36-2=34\)
Bài 2:
a: \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)
b: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left(a^2+2ab+b^2+2ac+c^2+2bc+a^2+ab+ac+a^2-b^2+bc-c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)