K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

=> 2A - A = 1 - \(\frac{1}{2^{100}}\)

<=> A = 1 - \(\frac{1}{2^{100}}\)

5 tháng 9 2018

\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)

\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)

\(A=1-\frac{1}{2^{100}}\)

30 tháng 4 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}})-(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}})\)

\(A=2-\frac{1}{2^{2012}}\)

Vậy A = \(2-\frac{1}{2^{2012}}\)

~Chúc bạn học tốt~

30 tháng 4 2018

Xét\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

Lấy 2A - A Ta được

\(A=2-\frac{1}{2^{2012}}\)

3 tháng 2 2019

a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012

2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013

3M=2^0+2^2013

M=(2^0+2^2013)÷3

Vậy.......

b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012

3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013

4N=3-3^2013

N=(3-3^2013)÷4

Vậy........

K tao nhé ko lên lớp tao đánh m😈😈😈

3 tháng 2 2019

Bt dễ thế mà ko làm dc😂😂😂😂😂

Ta có :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1

=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )

=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]

=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )

=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]

=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )

=> 3B = 2101 - 1

=> B = \(\frac{2^{101} - 1}{3}\)

gọi dãy số là A, ta có:

A = 2100 - 299 - ...... - 21

2A = 2101 - 2100 - .... - 22

2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )

A = 2101 - 2

16 tháng 7 2017

\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+...+\frac{1}{99}.\frac{1}{100}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)