Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}})-(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}})\)
\(A=2-\frac{1}{2^{2012}}\)
Vậy A = \(2-\frac{1}{2^{2012}}\)
~Chúc bạn học tốt~
Xét\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
Lấy 2A - A Ta được
\(A=2-\frac{1}{2^{2012}}\)
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
Ta có :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1
=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )
=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]
=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )
=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]
=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )
=> 3B = 2101 - 1
=> B = \(\frac{2^{101} - 1}{3}\)
gọi dãy số là A, ta có:
A = 2100 - 299 - ...... - 21
2A = 2101 - 2100 - .... - 22
2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )
A = 2101 - 2
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+...+\frac{1}{99}.\frac{1}{100}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=> 2A - A = 1 - \(\frac{1}{2^{100}}\)
<=> A = 1 - \(\frac{1}{2^{100}}\)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)
\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)