K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Trả lời giùm đê

30 tháng 12 2017

ko biết chứ bộ

16 tháng 10 2017

Bằng 0 và ko có giá trị của x thỏa mãn

16 tháng 10 2017

làm ơn ghi lời giải

11 tháng 7 2021

3( x - 1 ) - 2| x + 3 | (*)

Với x < -3 (*) trở thành 3x - 3 + 2( x + 3 ) = 3x - 3 + 2x + 6 = 5x + 3

Với x >= -3 (*) trở thành 3x - 3 - 2( x + 3 ) = 3x - 3 - 2x - 6 = x - 9

17 tháng 6 2016

Đối với bài này, ta sẽ xét các khoảng giá trị của x : 

  • Với \(x< -1\Rightarrow\hept{\begin{cases}x+1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x-3\right|=3-x\end{cases}}}\)

Khi đó , \(E=2\left(3-x\right)+-x-1-5=-3x\)

  • Với \(x>3\Rightarrow\hept{\begin{cases}x-3>0\\x+1>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|x-3\right|=x-3\\\left|x+1\right|=x+1\end{cases}}\)

Khi đó, \(E=2\left(x-3\right)+\left(x+1\right)-5=3x-10\)

  • Với \(-1\le x\le3\Rightarrow\hept{\begin{cases}x-3\le0\\x+1\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|x-3\right|=3-x\\\left|x+1\right|=x+1\end{cases}}\)

Khi đó \(E=2\left(3-x\right)+\left(x+1\right)-5=-x+2\)

Vậy .....

18 tháng 6 2016

Viết thế này gọn hơn của Ngọc xíu:

\(E=\hept{\begin{cases}x< -1\mid:2\left(3-x\right)-\left(x+1\right)-5\\-1\le x< 3\mid:2\left(3-x\right)+x+1-5\\x\ge3\mid2:\left(x-3\right)+x+1-5\end{cases}=\hept{\begin{cases}x< -1\mid:-3x\\-1\le x< 3\mid:-x+2\\x\ge3\mid:3x-10\end{cases}}}\)

12 tháng 8 2016

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

  • Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

  • Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

  • Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

  • Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

12 tháng 8 2016

lần sau đăng ít thôi