\(B=\left(\frac{6}{a-1}+\frac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

a) Ta có: \(A=\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(2\sqrt{4+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(2\sqrt{4+\left|\sqrt{5}-1\right|}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)(Vì \(\sqrt{5}>1\))

\(=\left(2\sqrt{4+\sqrt{5}-1}\right)\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)

\(=2\cdot\sqrt{3+\sqrt{5}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{5+2\cdot\sqrt{5}\cdot1+1}\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left|\sqrt{5}+1\right|\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)\)

\(=2\cdot\left(5-1\right)\)

\(=2\cdot4=8\)

b) Ta có: \(B=\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\cdot\left(1-\frac{2}{a+1}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}-1\right)^2+\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\right)\cdot\left(\frac{a+1-2}{a+1}\right)^2\)

\(=\frac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)

\(=\frac{2a+2}{\left(a-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)

\(=\frac{2\left(a+1\right)\cdot\left(a-1\right)}{\left(a+1\right)^2}\)

\(=\frac{2a-2}{a+1}\)

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm