\(\left(\sqrt{26}+5\sqrt{2}\right)\sqrt{19-5\sqrt{13}}\)

NHAN...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

Đặt căn2 làm thừa số chung, nhân vào căn19-5căn13. Triệt căn thức, dùng hẳng đẳng thúc là được.

Kq:12

22 tháng 5 2019

A=(\(\sqrt{13}\).\(\sqrt{2}\)+5\(\sqrt{2}\))\(\sqrt{19-5\sqrt{13}}\)

   =(\(\sqrt{13}\)+5)\(\sqrt{2}\)\(\sqrt{19-5\sqrt{13}}\)

   =(\(\sqrt{13}\)+5) \(\sqrt{2\left(19-5\sqrt{13}\right)}\)

   = (\(\sqrt{13}\)+5) \(\sqrt{38-2.5\sqrt{13}}\)

   =(\(\sqrt{13}\)+5) \(\sqrt{5^2-2.5\sqrt{13}+13}\)

   =(\(\sqrt{13}\)+5)\(\sqrt{\left(5-\sqrt{13}\right)^2}\)

   =(\(\sqrt{13}\)+5) \(|5-\sqrt{13}|\)

   =(5+\(\sqrt{13}\))(5-\(\sqrt{13}\))

   = 25-13 = 12

15 tháng 7 2017

a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)

\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)

\(=20\sqrt{2}-33\)

b) câu b đề sai

16 tháng 7 2017

câu a, \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2=-10\sqrt{2}+5.2-\left(8-30\sqrt{2}+25\right)\)

= \(-33+20\sqrt{2}\)

10 tháng 7 2017

1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)

bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi

10 tháng 7 2017

Thanks

2 tháng 9 2017

\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)

a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)

b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)

a) \(\sqrt{26+15\sqrt{3}}\)

\(=\frac{\sqrt{52+30\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{3}\right)^2+2.3\sqrt{3}.5+5^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{3}+5\right)^2}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}\)

b) \(\)\(\sqrt{2-\sqrt{3}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}-1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}\)

c) \(\left(\sqrt{10}-\sqrt{2}\right).\left(\sqrt{3+5}\right)\)

\(=\sqrt{10}.\sqrt{8}-\sqrt{2}.\sqrt{8}\)

\(=\sqrt{80}-\sqrt{16}=4\sqrt{5}-4\)

d) \(\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)

\(=\left(\sqrt{6}-2\right)\left(\sqrt{5+\sqrt{24}}\right).\sqrt{5-\sqrt{24}}.\left(\sqrt{5+\sqrt{24}}\right)\)

\(=\left(\sqrt{6}-2\right)\left(\sqrt{5+\sqrt{24}}\right).1\)

\(=\left(\sqrt{6}-2\right).\left(\sqrt{5+\sqrt{24}}\right)\)

\(=\sqrt{2}.\left(\sqrt{3}-\sqrt{2}\right).\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{2}.\left(3-2\right)=\sqrt{2}\)

\(=\left(6-2\sqrt{5}\right)\cdot\left(\sqrt{5}+1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=\left(6-2\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)

=36-20

=16