\(\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right):\left(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right):\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)\)

\(A=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\times\frac{\sqrt{x^2-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

\(A=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

Thay \(x=\frac{a^2+b^2}{2ab}\)vào A, ta được : 

\(A=\frac{\sqrt{\frac{a^2+b^2}{2ab}+1}+\sqrt{\frac{a^2+b^2}{2ab}-1}}{\sqrt{\frac{a^2+b^2}{2ab}+1}-\sqrt{\frac{a^2+b^2}{2ab}-1}}\)

\(A=\frac{\sqrt{\frac{\left(a+b\right)^2}{2ab}}+\sqrt{\frac{\left(b-a\right)^2}{2ab}}}{\sqrt{\frac{\left(a+b\right)^2}{2ab}}-\sqrt{\frac{\left(b-a\right)^2}{2ab}}}\)

\(A=\frac{a+b\sqrt{\frac{1}{2ab}}+\left(b-a\right)\sqrt{\frac{1}{2ab}}}{a+b\sqrt{\frac{1}{2ab}}-\left(b-a\right)\sqrt{\frac{1}{2ab}}}\)

\(A=\frac{a+b+b-a}{a+b-b+a}\)

\(A=\frac{2b}{2a}\)

\(A=\frac{b}{a}\)

                            Ps : Nhớ k cho tui nhó, tui đã rất cố gắng rồi đấy. :)) K để lần sau có j tui giải giúp cho :)))

                                                                                                                                         # Aeri # 

1 tháng 9 2020

\(A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\right).\left(\frac{\sqrt{\left(x-1\right)\left(x+1\right)}}{\sqrt{x+1}-\sqrt{x-1}}\right)=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}=\frac{2\left(x+\sqrt{x^2-1}\right)}{2}=x+\sqrt{x^2-1}\)

Thế vào rồi tính nhé

\(\)

1 tháng 9 2020

Ta có: \(A=\left(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right):\left(\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\right)\)   \(\left(ĐK:x\ge1\right)\)

    \(\Leftrightarrow A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}.\sqrt{x-1}}\right).\left(\frac{\sqrt{x+1}.\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\right)\)

    \(\Leftrightarrow A=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right).\left(\sqrt{x+1}-\sqrt{x-1}\right)}{\left(\sqrt{x+1}-\sqrt{x-1}\right)^2}\)

    \(\Leftrightarrow A=\frac{x+1-x+1}{x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}}\)

    \(\Leftrightarrow A=\frac{2}{2x+2\sqrt{x^2-1}}\)

Thay \(x=\frac{a^2+b^2}{2ab}\)vào phương trình \(A,\)ta có: 

          \(A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+b^2}{2ab}+1\right)\left(\frac{a^2+b^2}{2ab}-1\right)}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+2ab+b^2}{2ab}\right)\left(\frac{a^2-2ab+b^2}{2ab}\right)}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\frac{\left(a+b\right)^2\left(a-b\right)^2}{\left(2ab\right)^2}}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\frac{\left(a+b\right)\left(a-b\right)}{2ab}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2+a^2-b^2}{2ab}}\)

   \(\Leftrightarrow A=\frac{2ab}{2a^2}\)

   \(\Leftrightarrow A=\frac{b}{a}\)

Chúc bn hok tốt

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

17 tháng 8 2015

1)))))))

\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

 

17 tháng 8 2015

\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)

19 tháng 8 2020

Bài 1 : 

a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}+1}{x}\)

b) \(P>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)

\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)

\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)

\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)

Vậy P > 1/2 với mọi x> 0 ; x khác 1

19 tháng 8 2020

Bài 2 : 

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)

\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)

\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)

b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )

Thay a vào biểu thức K , ta có :

\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)

28 tháng 10 2020

\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

Để A > 0 

=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>0\end{cases}}\Leftrightarrow x>1\)

2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}< 0\end{cases}}\)( dễ thấy trường hợp này không xảy ra :> )

Vậy với x > 1 thì A > 0