Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x khác 2 và -3
\(P=\frac{x+2}{x+3}-\frac{5}{x+2x-3x-6}-\frac{1}{x-2}\)
\(P=\frac{\left(x+2\right).\left(x-2\right)}{\left(x+3\right).\left(x-2\right)}-\frac{5}{\left(x-2\right).\left(x+3\right)}-\frac{x+3}{\left(x-2\right).\left(x+3\right)}\)
\(P=\frac{x^2-4-5-x-3}{\left(x-2\right).\left(x+3\right)}=\frac{x^2-x-12}{\left(x+2\right).\left(x+3\right)}=\frac{\left(x-4\right).\left(x+3\right)}{\left(x+2\right).\left(x+3\right)}=\frac{x-4}{x+2}\)
a) đk : \(x\ne2;-3\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{x^2+x-6}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{x^2+x-6}\)
\(=\frac{x^2-x-12}{x^2+x-6}\)
\(=\frac{x^2-4x+3x-12}{x^2+3x-2x-6}\)
\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{x\left(x+3\right)-2\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
b)
A>0.
\(\frac{x-4}{x-2}>0\)
th1 :
x-4>0 và x-2>0
<=> x>4
th2 : x-4 <0 và x-2 < 0
<=> x<2
Vậy để A>0 thì x>4 hoặc x<2
a) \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) \(\left(ĐKXĐ:x\ne2;-3\right)\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{-1\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{\left(x^2-4x\right)+\left(3x-12\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x-4}{x-2}\)
b) Để \(A>0\)thì \(\frac{x-4}{x-2}>0\)
\(\Rightarrow\)(x - 4) ; (x - 2) cùng dấu
* hoặc \(\hept{\begin{cases}x-4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x>2\end{cases}}\Leftrightarrow x>4\)
* hoặc \(\hept{\begin{cases}x-4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\x< 2\end{cases}}\Leftrightarrow x< 2\)
Vậy \(\orbr{\begin{cases}x>4\\x< 2\end{cases}}\)
1. P = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) ĐKXĐ: \(x\ne-3\), \(x\ne2\)
= \(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
= \(\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{x-2}\)
= \(\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{x-4}{x-2}\)
2. P=\(\frac{-3}{4}\)
<=> \(\frac{x-4}{x-2}=\frac{-3}{4}\)
<=> 4 ( x - 4 ) = -3 ( x - 2 )
<=> 4x - 16 = -3x + 6
<=> 7x = 2
<=> x = \(\frac{22}{7}\)
3. \(x^2-9=0\)
<=> ( x -3 ) ( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
-> P = \(\frac{3-4}{3-2}\) = -1
M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5
= 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1
k mk nha
\(A=\left(\frac{x-2}{x+2}-\frac{x+2}{2-x}-\frac{x^2-3x+6}{x^2-4}\right):\left(1-\frac{3}{x-2}\right)\)
\(=\left(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x^2-3x+6}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x-2}{x-2}-\frac{3}{x-2}\right)\)
\(=\frac{x^2-4x+4+x^2+4x+4-x^2+3x-6}{\left(x+2\right)\left(x-2\right)}:\frac{x-2-3}{x-2}\)
\(=\frac{x^2+3x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x-5}{x-2}\)
\(=\frac{x^2+x+2x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x-5}{x-2}\).
\(=\frac{x\left(x+1\right)+2\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x-5}\)
\(=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x-5}\)
\(=\frac{x+1}{x-2}.\frac{x-2}{x-5}\)
\(=\frac{x+1}{x-5}\)
.
a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
=\(\frac{x-4}{x-2}\)
b. Để A >0 thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)
Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)
c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0,1,3,4\right\}\)
Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)
B=\(\frac{3\left(2x^8+5x^6+6x^4+5x^2+2\right)}{x\left(x^2+1\right)\left(2x^4+x^2+2\right)}\)
BT <=>
\(A=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-9-x-3}{MTC}=\frac{x^2-x-12}{MTC}\)
A = \(\frac{x+2}{x+3}\)\(-\frac{5}{X^2+X-6}\)\(+\frac{1}{2-X}\)
A= \(\frac{x+2}{x+3}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{1}{X-2}\)
A = \(\frac{\left(X+2\right)\left(X-2\right)}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{X+3}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{\left(X+2\right)\left(X-2\right)-5-\left(X+3\right)}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{X-4-5-X-3}{\left(X-2\right)\left(X+3\right)}\)
A= \(-\frac{12}{\left(X-2\right)\left(X+3\right)}\)