\(\frac{2}{x+2}\)-\(\frac{4}{x^2+4x+4}\)) : (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)

\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)

\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)

11 tháng 3 2020

a) A có nghĩa\(\Leftrightarrow\hept{\begin{cases}2-x\ne0\\2+x\ne0\\x-3\ne0\end{cases}}\Rightarrow x\ne\pm2;x\ne3\)

\(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)

\(=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)

\(=\frac{x^2+4x+4-4+4x-x^2+4x^2}{4-x^2}:\frac{x-3}{2-x}\)

\(=\frac{4x^2+8x}{4-x^2}.\frac{2-x}{x-3}\)

\(=\frac{4x\left(x+2\right)}{\left(2+x\right)\left(x-3\right)}=\frac{4x}{x-3}\)

b) \(A=1\Leftrightarrow4x=x-3\Leftrightarrow x=-1\)

c) \(A>0\Leftrightarrow\frac{4x}{x-3}>0\)

TH1: \(\hept{\begin{cases}4x>0\\x-3>0\end{cases}}\Leftrightarrow x>3\)

TH2: \(\hept{\begin{cases}4x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)

Giúp mình với đúng mik tích cho :>>

12 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm5\end{cases}}\)

\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)

\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{\left(x^2+10x+25\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)x}\)

\(\Leftrightarrow M=\frac{\left(x+5\right)^2}{x\left(x+5\right)}\)

\(\Leftrightarrow M=\frac{x+5}{x}\)

b) Để \(M\inℤ\)

\(\Leftrightarrow x+5⋮x\)

\(\Leftrightarrow5⋮x\)

\(\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà \(x\ne\pm5\)

\(\Leftrightarrow x\in\left\{1;-1\right\}\)

Vậy để \(M\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

13 tháng 3 2020

\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\left(x\ne\pm5;x\ne0\right)\)

\(\Leftrightarrow M=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\left(\frac{x^2-5x}{\left(x-5\right)\left(x+5\right)}+\frac{5x+25}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{\left(x+5\right)^2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}=\frac{x+5}{x}\)

b) M là số nguyên thì x+5 chia hết cho x

=> 5 chia hết cho x

x nguyên => x thuộc Ư (5)={-5;-1;1;5}
Vậy x={-5;-1;1;5} thì M là số nguyên

d> Ta có: \(\frac{-1}{x-2}\)( Theo a )

 Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1

  *> X-2=1 => X=3 (TMĐK)

  *> X-2=-1 => X=1 (TMĐK)

13 tháng 3 2020

bạn ơi bạn kiểm tra lại đề thêm lần nữa xem có sai ko ?

13 tháng 3 2020

câu a mình rút gọn ra:

\(A=\frac{5-3x}{\left(2x-3\right)\left(x-1\right)}.\frac{x}{5+3x}\)

tới đây hết rút được rồi

10 tháng 3 2020

\(B=\left(\frac{2x+1}{2x-1}+\frac{4}{1-4x^2}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\left(x\ne\pm\frac{1}{2}\right)\)

\(\Leftrightarrow B=\left(\frac{2x+1}{2x-1}-\frac{4}{4x^2-1}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)

\(\Leftrightarrow B=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{4}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right)\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{\left(2x\right)^2+2\cdot1\cdot2x+1-4-\left[\left(2x\right)^2-2\cdot2x\cdot1+1^2\right]}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{4x^2+4x-3-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{\left(8x-4\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4}{x^2+2}\)

b) \(B=\frac{4}{x^2+2}\left(x\ne\pm\frac{1}{2}\right)\)

Với x=-1 (TMĐK) thay vào B ta có:

\(B=\frac{4}{\left(-1\right)^2+2}=\frac{4}{1+2}=\frac{4}{3}\)

Vậy \(B=\frac{4}{3}\)khi x=-1