Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\cdot...\left(1+\dfrac{1}{2499}\right)\)
\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot...\cdot\dfrac{2500}{2499}\)
\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{50\cdot50}{49\cdot51}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\dfrac{2\cdot3\cdot...\cdot50}{3\cdot4\cdot...\cdot51}\)
\(=\dfrac{50}{1}\cdot\dfrac{2}{51}=\dfrac{100}{51}\)
A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)\)\(...\left(1+\frac{1}{2499}\right)\)
A = \(\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{8}{8}+\frac{1}{8}\right)\left(\frac{15}{15}+\frac{1}{15}\right)\)\(...\left(\frac{2499}{2499}+\frac{1}{2499}\right)\)
A = \(\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{2500}{2499}\)
A = \(\frac{4.9.16.....2500}{3.8.15.....2499}\)
A = \(\frac{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(50.50\right)}{3.8.15.24.....2499}\)
A = \(\frac{2.3.4.....50}{3.4.5.6.....51}\)
A = \(\frac{2}{51}\)
Vậy A = \(\frac{2}{51}\)
( Nếu sai mong bạn thông cảm ạ ! )
_HT_
Answer:
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{2499}\right)\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{2500}{2499}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}\)
\(=\frac{2^2.3^2.4^2...50^2}{1.3.2.4.3.5...49.51}\)
\(=\frac{2.50}{51}\)
\(=\frac{100}{51}\)
A = 1 + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
3\(\times\) A = 3 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)
3A - A = 3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\)
2A = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)
A = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2
A = \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2
A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2B = 2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2B + B = 2 - \(\dfrac{1}{2^{100}}\)
3B = 2 - \(\dfrac{1}{2^{100}}\)
B = ( 2 - \(\dfrac{1}{2^{100}}\)): 3
B = \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3
B = \(\dfrac{2^{101}-1}{3.2^{100}}\)
\(C=\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{2499}\right)\)
\(C=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{2500}{2499}\)
\(C=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}...\dfrac{50.50}{49.51}\)
\(C=\dfrac{2.2.3.3.4.4...50.50}{1.3.2.4.3.5...49.51}\)
\(C=\dfrac{2.3.4...50}{1.2.3...49}.\dfrac{2.3.4...50}{3.4.5...51}\)
\(C=50.\dfrac{2}{51}\)
\(C=\dfrac{100}{51}\)
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{2499}\right)\)
\(A=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot...\cdot\frac{2500}{2499}\)
\(A=\frac{2\cdot2}{1\cdot3}\cdot\frac{3\cdot3}{2\cdot4}\cdot\frac{4\cdot4}{3\cdot5}\cdot...\cdot\frac{50\cdot50}{49\cdot51}\)
\(A=\frac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot50\cdot50}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot49\cdot51}\)
\(A=\frac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\frac{2\cdot3\cdot4\cdot...\cdot50}{3\cdot4\cdot5\cdot...\cdot51}\)
\(A=50\cdot\frac{2}{51}=\frac{100}{51}\)
100% không ai làm được