Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\left(ĐKXĐ:A\ge0\right)\)
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(\sqrt{x+\sqrt{x^2-50}}\right)^2\)
\(A^2=\left[x-\sqrt{50}-2\left(\sqrt{\left(x-\sqrt{50}\right).\left(x+\sqrt{50}\right)}\right)+x+\sqrt{50}\right]\left(x+\sqrt{x^2-50}\right)\)
\(A^2=\left[2x-2\left(\sqrt{x^2-50}\right)\right].\left(x+\sqrt{x^2-50}\right)\)
\(A^2=2x^2+2x\left(\sqrt{x^2-50}\right)-2x\left(\sqrt{x^2-50}\right)-2\left(\sqrt{x^2-50}\right)^2\)
\(A^2=2x^2-2\left(x^2-50\right)\)
\(A^2=100\)
\(\Rightarrow A=10\)
Trịnh Thành Công - Trang của Trịnh Thành Công - Học toán với OnlineMath đáp án là - 10 chứ không phải 10 đâu.
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2}-50}\)
Suy ra
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x-\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x^2-\left(\sqrt{x^2-50}\right)^2\right)=2\left(x^2-\left(x^2-50\right)\right)=100\).
Với \(x\ge50\) thì \(x-\sqrt{50}< x+\sqrt{50}\) hay \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\).
Suy ra \(A< 0\) mà \(A^2=100\) hay \(A=-10\).
\(\sqrt{8-2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
A=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{5}.\sqrt{3}+3}\)
A=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
A=\(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
A=\(-2\sqrt{3}\)
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(A=\left|\sqrt{5}-\sqrt{3}\right|-\sqrt{5}-\sqrt{3}\)
\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(A=-2\sqrt{3}\)
\(\sqrt{8-2\sqrt{7}-\left[\left(\sqrt{7}+1\right)^2\right]}\)
\(\sqrt{8-2\sqrt{7}-\sqrt{7}-1}\)
\(\Leftrightarrow\sqrt{7-\sqrt{7}}\)
\(\sqrt{8-2\sqrt{7}}-\sqrt{23-8\sqrt{7}}=\) \(\sqrt{1-2\sqrt{7}+7}-\sqrt{7-2.4.\sqrt{7}+16}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-4\right)^2}\)
\(=\sqrt{7}-1-\left(-\sqrt{7}+4\right)\)
\(=\sqrt{7}-1+\sqrt{7}-4\)\(=2\sqrt{7}-5\)
chúc bn học tốt
=\(\sqrt{\left(\sqrt{7}-1\right)^2}\)- \(\sqrt{\left(4-\sqrt{7}\right)^2}\)
= \(\sqrt{7}\)- 1 - 4 + \(\sqrt{7}\)
= \(2\sqrt{7}\)-5
đ/á ra hơi kì
#mã mã#
\(\sqrt{8-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)
\(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2\)
\(=8+3\sqrt{7}+8-3\sqrt{7}+2\sqrt{64-63}\)
\(=16+2=18\)
\(\sqrt{\frac{2}{8-3\sqrt{7}}}=\frac{2\left(8+3\sqrt{7}\right)}{\left(8-3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}=2\left(8+3\sqrt{7}\right)\)
√2 + √8 + √50 = √2 + √(22.2) + √(52.2)
= √2 + 2√2 + 5√2 = 8√2