Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình thì:
/x-\(\sqrt{1-2x+x^2}\) / = /x-/x-1//=/x-x+1/(vì x>\(\sqrt{2}\) => x-1>0) = /1/=1
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}\)
Do A=căn 2
=> \(\frac{\sqrt{x}}{\sqrt{x}-1}=\sqrt{2}\)
Đặt căn x=a
=> a/(a-1)=căn 2
=> \(a.\sqrt{2}-\sqrt{2}=a\)
=> \(\left(a-1\right)\left(\sqrt{2}-1\right)=1\)
=> a=\(\frac{1}{\sqrt{2}-1}+1=\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+1\)
=> a=căn 2+2
=> \(\sqrt{x}=\sqrt{2}+2\) do căn x=a
=> \(\sqrt{x}-\sqrt{2}=\sqrt{2}+2-\sqrt{2}=2\)
=> Là số nguyên.
b) \(A=\sqrt{x}+1\)
Để A \(\in\)Z \(\Leftrightarrow\sqrt{x}+1\in Z\)\(\Leftrightarrow\sqrt{x}\in Z\)
\(\Leftrightarrow\sqrt{x}=a\left(a\in Z;a\ge0\right)\)\(\Leftrightarrow x=a^2\)
vậy x là bình phương 1 số tự nhiên thì A thuộc Z
\(B=\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}}\)
\(B^2=x+\sqrt{x^2-1}+x-\sqrt{x^2-1}-2\sqrt{\left(x+\sqrt{x^2-1}\right)\left(x-\sqrt{x^2-1}\right)}\)
\(B^2=2x-2\sqrt{x^2-x^2+1}\)
\(B^2=2x-2\)
\(\Rightarrow B=\sqrt{2x-2}\)
\(C=\sqrt{x+2\sqrt{x-1}}-\sqrt{x-1}\left(ĐK:x\ge1\right)\)
\(C=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{x-1}\)
\(C=\sqrt{x-1}+1-\sqrt{x-1}=1\)
Đề sai rồi bạn