Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
3: |2x-1|=|x+1|
=>2x-1=x+1 hoặc 2x-1=-x-1
=>x=2 hoặc 3x=0
=>x=2 hoặc x=0
4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)
mình chỉ biết làm 2 câu b and c thôi bạn thông cảm nha
Tìm x,y,z
b,\(\left(x+\frac{1}{2}\right)^2=\frac{81}{64}\)
Có \(\frac{81}{64}=\left(\frac{9}{8}\right)^2hoặc\frac{81}{64}=\left(-\frac{9}{8}\right)^2\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2hoặc\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)
+TH1: \(\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{9}{8}\)
\(x=\frac{9}{8}-\frac{1}{2}\)
\(x=\frac{9-4}{8}\)
\(x=\frac{5}{8}\)
+TH2:\(\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=-\frac{9}{8}\)
\(x=-\frac{9}{8}-\frac{1}{2}\)
\(x=\frac{-9-4}{8}\)
\(x=\frac{-13}{8}\)
Vậy x= \(\frac{5}{8}\)hoặc x=\(\frac{-13}{8}\)
c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x^2-2y^2+z^2\)
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\)
- Do đó :
\(\frac{x^2}{4}=4\Leftrightarrow\frac{x}{2}=4\Rightarrow x=4.2=8\)
\(\frac{2y^2}{18}=4\Leftrightarrow\frac{y^2}{9}=4\Rightarrow\frac{y}{3}=4\Rightarrow y=4.3=12\)
\(\frac{z^2}{25}=4\Leftrightarrow\frac{z}{5}=4\Rightarrow z=4.5=20\)
vậy x = 8 , y= 12 ,z=20
a) \(\sqrt{3-x}\)=5
=>(\(\sqrt{3-x}\))2=52
=>3-x=25
=>x=-22
\(A=B.C\) đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{2y}\end{matrix}\right.\)
\(B=\dfrac{2a^2+b^2}{\left(a-b\right)\left(a^2+b^2+ab\right)}-\dfrac{a}{a^2+ab+b^2}\)
\(B=\dfrac{2a^2+b^2-a\left(a-b\right)}{\left(a-b\right)\left(a^2+b^2+ab\right)}=\dfrac{a^2+b^2+ab}{\left(a-b\right)\left(a^2+b^2+ab\right)}\)
\(B=\dfrac{1}{a-b}\)
\(C=\dfrac{a^3+b^3}{b^2+ab}-a=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{b\left(a+b\right)}-a=\dfrac{a^2+b^2-ab-ab}{b}\)
\(C=\dfrac{\left(a-b\right)^2}{b}\)
\(A=\dfrac{1}{a-b}.\dfrac{\left(a-b\right)^2}{b}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)
\(A=\sqrt{\dfrac{x}{2y}}-1\)
A=\(\sqrt{\dfrac{x}{y2}}-1\)