\(A=\left[\dfrac{2\left(x+y\right)}{\sqrt{x^3}-2\sqrt{2y^3}}-\dfrac{\sqrt{x}}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

\(A=B.C\) đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{2y}\end{matrix}\right.\)

\(B=\dfrac{2a^2+b^2}{\left(a-b\right)\left(a^2+b^2+ab\right)}-\dfrac{a}{a^2+ab+b^2}\)

\(B=\dfrac{2a^2+b^2-a\left(a-b\right)}{\left(a-b\right)\left(a^2+b^2+ab\right)}=\dfrac{a^2+b^2+ab}{\left(a-b\right)\left(a^2+b^2+ab\right)}\)

\(B=\dfrac{1}{a-b}\)

\(C=\dfrac{a^3+b^3}{b^2+ab}-a=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{b\left(a+b\right)}-a=\dfrac{a^2+b^2-ab-ab}{b}\)

\(C=\dfrac{\left(a-b\right)^2}{b}\)

\(A=\dfrac{1}{a-b}.\dfrac{\left(a-b\right)^2}{b}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)

\(A=\sqrt{\dfrac{x}{2y}}-1\)

23 tháng 5 2017

A=\(\sqrt{\dfrac{x}{y2}}-1\)yeu

Bài 1: 

a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)

=>2 căn x=6

=>căn x=3

=>x=9

b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)

=>x=1

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)

10 tháng 3 2020

mình chỉ biết làm 2 câu b and c thôi bạn thông cảm nha

Tìm x,y,z

b,\(\left(x+\frac{1}{2}\right)^2=\frac{81}{64}\)

\(\frac{81}{64}=\left(\frac{9}{8}\right)^2hoặc\frac{81}{64}=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2hoặc\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

+TH1: \(\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{9}{8}\)

\(x=\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{9-4}{8}\)

\(x=\frac{5}{8}\)

+TH2:\(\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=-\frac{9}{8}\)

\(x=-\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{-9-4}{8}\)

\(x=\frac{-13}{8}\)

Vậy x= \(\frac{5}{8}\)hoặc x=\(\frac{-13}{8}\)

c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x^2-2y^2+z^2\)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\)

- Do đó :

\(\frac{x^2}{4}=4\Leftrightarrow\frac{x}{2}=4\Rightarrow x=4.2=8\)

\(\frac{2y^2}{18}=4\Leftrightarrow\frac{y^2}{9}=4\Rightarrow\frac{y}{3}=4\Rightarrow y=4.3=12\)

\(\frac{z^2}{25}=4\Leftrightarrow\frac{z}{5}=4\Rightarrow z=4.5=20\)

vậy x = 8 , y= 12 ,z=20

2 tháng 9 2018

a) \(\sqrt{3-x}\)=5

=>(\(\sqrt{3-x}\))2=52

=>3-x=25

=>x=-22