Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)
\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)
\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)
\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)
M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu
a,
\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
b,
\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)
\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)
\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)
\(=\left(a-b\right)2b=2ab-2b^2\)
xét \(\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}=\sqrt{\frac{b^4\left(a^2+b^2\right)^2+a^4\left(a^2+b^2\right)^2+a^4b^4}{a^4b^4\left(a^2+b^2\right)^2}}=\sqrt{\frac{a^8+b^8+2a^2b^6+a^4b^4+a^4b^4+2a^6b^2+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}\)=\(\sqrt{\frac{\left(a^4+b^4\right)^2+2a^2b^2\left(a^4+b^4\right)+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}=\sqrt{\frac{\left(a^4+b^4+a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}\)
\(A=\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}=\frac{\left(a^4+b^4\right)\left(a^2+b^2\right)^2+a^4b^4}{a^4b^4\left(a^2+b^2\right)^2}\)
\(=\frac{\left(a^4+b^4\right)\left(a^4+b^4+2a^2b^2\right)+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}=\frac{\left(a^4+b^4\right)^2+2a^2b^2\left(a^4+b^4\right)+\left(a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}\)
\(=\frac{\left(a^4+b^4+a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}\)
\(\Rightarrow B=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{A}\)\(=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\frac{\left(a^2+b^2\right)^2-a^2b^2}{a^2b^2\left(a^2+b^2\right)}\)
\(=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\frac{a^2+b^2}{a^2.b^2}-\frac{1}{a^2+b^2}\)
\(=\)\(\frac{\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2+2ab\right)+a^2b^2}{\left[ab\left(a+b\right)\right]^2}\)
\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right).ab+\left(ab\right)^2}{\left[ab\left(a+b\right)\right]^2}\)
\(=\frac{\left(a^2+b^2+ab\right)^2}{\left[ab\left(a+b\right)\right]^2}=\left[\frac{a^2+b^2+ab}{ab\left(a+b\right)}\right]^2\)
\(\Rightarrow\sqrt{B}=\left|\frac{a^2+b^2+ab}{ab\left(a+b\right)}\right|=\frac{a^2+b^2+ab}{\left|ab\left(a+b\right)\right|}\)