\(\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

xét \(\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}=\sqrt{\frac{b^4\left(a^2+b^2\right)^2+a^4\left(a^2+b^2\right)^2+a^4b^4}{a^4b^4\left(a^2+b^2\right)^2}}=\sqrt{\frac{a^8+b^8+2a^2b^6+a^4b^4+a^4b^4+2a^6b^2+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}\)=\(\sqrt{\frac{\left(a^4+b^4\right)^2+2a^2b^2\left(a^4+b^4\right)+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}=\sqrt{\frac{\left(a^4+b^4+a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}\)

11 tháng 8 2017

Bài 1: 

Ta có:

\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)

\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)

\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)

\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

11 tháng 4 2017

Khó quá ; đề ở đâu vậy bạn ........

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)