Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+4x+7=-\left(x^2-4x+4\right)+11=-\left(x-2\right)^2+11\)
Ta thấy : \(-\left(x-2\right)^2+11\le11\)\(\Leftrightarrow maxA=11\)khi \(x=2\)
\(B=-4x^2+4x-5=-\left(4x^2-4x+1\right)-4=-\left(2x-1\right)^2-4\)
Ta thấy : \(-\left(2x-1\right)^2-4\le-4\)\(\Leftrightarrow maxB=-4\)khi \(x=\frac{1}{2}\)
\(C=-x^2+x+5=-\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{21}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{21}{4}\)
Ta thấy : \(-\left(x-\frac{1}{2}\right)^2+\frac{21}{4}\le\frac{21}{4}\)\(\Leftrightarrow maxC=\frac{21}{4}\)khi \(x=\frac{1}{2}\)
tk mk nka !!!
\(a^2+2ab+b^2-225c^4=\left(a+b\right)^2-\left(15c^2\right)^2=\left(a+b-15c^2\right)\left(a+b+15c^2\right)\)
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}=\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{\left(a-b\right)\left(a^3-b^3\right)}{a^2b^2}=\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\)
ta có \(\left(a-b\right)^2\ge0;a^2+ab+b^2>0;a^2b^2>0\)
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)
1) \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\)
\(=2a^2\cdot2b^2=4a^2b^2\)
\(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)
\(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\)
\(=2b^2\cdot2a^2=4a^2b^2\)