Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3x}{x-1}+\dfrac{2}{x+1}+\dfrac{3-3x-2x^2}{x^2-1}.\) \(\left(ĐKXĐ:x\ne1;x\ne-1\right).\)
\(A=\dfrac{3x\left(x+1\right)+2\left(x-1\right)+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)
\(A=\dfrac{3x^2+3x+2x-2+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)
\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}.\)
\(a,=x^2+6x+9+2x^2+5xy^2=3x^2+6x+5xy^2+9\\ b,=9x^2-12x+4-9x^2+1=-12x+5\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b) Với \(x=6013\)( thỏa mãn ĐKXĐ )
Thay \(x=6013\)vào biểu thức ta được:
\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)
a) (3x - 2)2 - (1 + 5x)2
= (3x - 2 - 1 - 5x)(3x - 2 + 1 + 5x)
= (-2x - 3)(8x - 1)
b) (3x + 4)(3x - 4) - (5 - x)2
= (3x)2 - 42 - (25 - 10x + x2)
= 9x2 - 16 - 25 + 10x - x2
= 8x2 + 10x - 41
c) \(\left(\dfrac{1}{2}x+4\right)^2-\left(\dfrac{1}{2}x+3\right)\left(\dfrac{1}{2}x-3\right)\)
\(=\left(\dfrac{1}{2}x\right)^2+2.\dfrac{1}{2}x.4+4^2-\left[\left(\dfrac{1}{2}x\right)^2-3^2\right]\)
\(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9\)
\(=4x+25\)
a: =9x^2-12x+4-25x^2-10x-1
=-16x^2-22x+3
b: =9x^2-16-x^2+10x-25
=8x^2+10x-41
c: \(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9=4x+25\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)
\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)
\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)
\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)
b) Khi \(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)
c) Để A = 0
\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919
Phần này mik k biết phân tích như thế nào, tính ra :
\(\Leftrightarrow x\approx2,89328919\)
Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !
d) Để \(A\inℤ\)
\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)
\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)
\(\left(3x+1\right)^2-3x\left(x+1\right)\left(x-2\right)\)
\(=9x^2+6x+1-3x\left(x^2-x-2\right)\)
\(=9x^2+6x+1-3x^3+3x^2+6x\)
\(=-3x^3+12x^2+12x+1\)
A=\(\left(x^2+3x+1\right)\left(\left(3x-1\right)^2+2\left(1-3x\right)\right)\)
A=\(\left(x^2+3x+1\right)\left(9x^2-6x+1+2-6x\right)\)
A=\(\left(x^2+3x+1\right)\left(9x^2+3\right)\)
+) Xét x<1 thì x-1<0 nên \(|\)x-1\(|\)=1-x
và x-2<0 nên \(|\)x-2\(|\)=2-x
A= 1-x+2-x=3x+1
3-2x=3x+1
3x+2x=3-1
5x=2
x=2/5(tm)
+) Xét 1\(\le\)x<2 thì x-1\(\ge\)0 nên \(|\)x-1\(|\)=x-1
và x-2<0 nên \(|\)x-2\(|\)=2-x
A=x-1+2-x=3x+1
3x+1=1
3x=0
x=0(loại vì không thuộc khoảng đang xét)
+) Xét x\(\ge\)2 thì x-1>0 nên \(|\)x-1\(|\)=x-1
và x-2\(\ge\)0 nên \(|\)x-2\(|\)=x-2
A=x-1+x-2=3x+1
2x-3=3x+1
3x-2x=-3-1
x=-4(loại vì không thuộc khoảng đang xét)
Vậy x=2/5