Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ x khác 3,-1/3
\(A=\frac{3x^3-9x^2-5x^2+15x-12x+36}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(3x^2-5x-12\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{3x^2-5x-12}{3x^2-10x+3}=\frac{\left(x-3\right)\left(3x+4\right)}{\left(x-3\right)\left(3x-1\right)}\)
\(=\frac{3x+4}{3x-1}\)
b,với ĐKXĐ ta có \(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=\frac{-4}{3}\left(tm\right)\)
c,\(\frac{3x+4}{3x-1}=\frac{3x-1+5}{3x-1}=1+\frac{5}{3x-1}\)
để A thuộc z thì \(\frac{5}{3x-1}\in Z\Rightarrow3x-1\inƯ\left(5\right)\) đến đây bạn tìm ước của 5 rồi tự giải nhé
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
\(=\frac{\left(x-\frac{2}{5}\right)\left(x+3\right)}{\left(x+\frac{1}{3}\right)\left(x+3\right)}\)
\(=\frac{x-\frac{2}{5}}{x+\frac{1}{3}}\)
=\(\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
=\(\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
=\(\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
=\(\frac{2x^2-6x+5x-15}{3x^2-9x-x+3}\)
=\(\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
=\(\frac{2x+5}{3x-1}\)
Xét tử thức ta có
2x3-7x2-12x+45
= 2x3+5x2-12x2-30x+18x+45
= x2(2x+5)-6x(2x+5)+9(2x+5)
= (2x+5)(x2-6x+9)
= (2x+5)(x-3)2 (1)
Xét mẫu thức ta có
3x3-19x2+33x-9
= 3x3-x2-18x2+6x+27x-9
= x2(3x-1)-6x(3x-1)+9(3x-1)
= (3x-1)(x2-6x+9)
= (3x-1)(x-3)2 (2)
Thay (1) và (2) vào A ta được\(A=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)
Lời giải:
Ta có:
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\text{TS}}{\text{MS}}\)
Xét \(\text{TS}=2x^2(x-3)-x(x-3)-15(x-3)\)
\(=(x-3)(2x^2-x-15)=(x-3)[2x(x-3)+5(x-3)]\)
\(=(x-3)(x-3)(2x+5)=(x-3)^2(2x+5)\)
Xét \(\text{MS}=3x^2(x-3)-10x(x-3)+3(x-3)\)
\(=(x-3)(3x^2-10x+3)=(x-3)[3x(x-3)-(x-3)]\)
\(=(x-3)(x-3)(3x-1)=(x-3)^2(3x-1)\)
Do đó:
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(x-3)^2(3x-1)}=\frac{2x+5}{3x-1}\)
a/ \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\dfrac{2x^3-12x^2+18x+5x^2-30x+45}{3x^3-18x^2+27x-x^2+6x-9}\)
\(=\dfrac{2x\left(x^2-6x+9\right)+5\left(x^2-6x+9\right)}{3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)}=\dfrac{\left(2x+5\right)\left(x^2-6x+9\right)}{\left(3x-1\right)\left(x^2-6x+9\right)}\)
\(=\dfrac{2x+5}{3x-1}\)
b/ \(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\dfrac{x^3+3x^2+2x-2x^2-6x-4}{x^3+3x^2+2x+5x^2+15x+10}\)
\(=\dfrac{x\left(x^2+3x+2\right)-2\left(x^2+3x+2\right)}{x\left(x^2+3x+2\right)+5\left(x^2+3x+2\right)}=\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x+5\right)\left(x^2+3x+2\right)}\)
\(=\dfrac{x-2}{x+5}\)
Lời giải:
ĐKXĐ:.........
a) \(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-(x^2-3x)-(15x-45)}{3x^3-9x^2-(10x^2-30x)+(3x-9)}\)
\(=\frac{2x^2(x-3)-x(x-3)-15(x-3)}{3x^2(x-3)-10x(x-3)+3(x-3)}=\frac{(x-3)(2x^2-x-15)}{(x-3)(3x^2-10x+3)}\)
\(=\frac{(x-3)[2x(x-3)+5(x-3)]}{(x-3)[3x(x-3)-(x-3)]}=\frac{(x-3)(x-3)(2x+5)}{(x-3)(x-3)(3x-1)}=\frac{2x+5}{3x-1}\)
b)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2(x+1)-4(x+1)}{x^3+x^2+7x^2+7x+10x+10}\)
\(=\frac{(x+1)(x^2-4)}{x^2(x+1)+7x(x+1)+10(x+1)}=\frac{(x+1)(x-2)(x+2)}{(x+1)(x^2+7x+10)}\)
\(=\frac{(x-2)(x+2)}{x^2+7x+10}=\frac{(x-2)(x+2)}{x(x+2)+5(x+2)}=\frac{(x-2)(x+2)}{(x+2)(x+5)}=\frac{x-2}{x+5}\)
A=\(\dfrac{3x^3-14x^2+3x+36}{3x^3-19x^2+33x-9}\)
=>A \(=\dfrac{\left(x-3\right)\left(3x^2-5x-12\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
=>A=\(\dfrac{\left(x-3\right)^2\left(3x+4\right)}{\left(x-3\right)^2\left(3x-1\right)}\)
=>A=\(\dfrac{3x+4}{3x-1}\)