\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Xét tử thức ta có

2x3-7x2-12x+45

= 2x3+5x2-12x2-30x+18x+45

= x2(2x+5)-6x(2x+5)+9(2x+5)

= (2x+5)(x2-6x+9)

= (2x+5)(x-3)(1)

Xét mẫu thức ta có

3x3-19x2+33x-9

= 3x3-x2-18x2+6x+27x-9

= x2(3x-1)-6x(3x-1)+9(3x-1)

= (3x-1)(x2-6x+9)

= (3x-1)(x-3)2 (2)

Thay (1) và (2) vào A ta được\(A=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\frac{\left(x-\frac{2}{5}\right)\left(x+3\right)}{\left(x+\frac{1}{3}\right)\left(x+3\right)}\)

\(=\frac{x-\frac{2}{5}}{x+\frac{1}{3}}\)

27 tháng 6 2019

=\(\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

=\(\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

=\(\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

=\(\frac{2x^2-6x+5x-15}{3x^2-9x-x+3}\)

=\(\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

=\(\frac{2x+5}{3x-1}\)

24 tháng 11 2018

\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)

                                                \(=\frac{2x+5}{3x-1}\)

Còn bài b bạn tự làm nhé

24 tháng 11 2018

Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)

Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

16 tháng 8 2018

a, mk làm đáp án luôn đó

B=(2x+5)/(3x-1)

b,Để B>0 thì 2x+5 và 3x-1 phải cùng dấu 

=> : x khác 0;-1;-2

28 tháng 5 2015

a, Ra đáp án luôn nha

B=(2x+5)/(3x-1)

b,Để B>0 thì 2x+5 và 3x-1 phải cùng dấu 

Đáp án : x khác 0;-1;-2

28 tháng 5 2015
 
 
22 tháng 11 2016

AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức

22 tháng 11 2016

uk mik cám ơn nhé

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

Ta có:

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\text{TS}}{\text{MS}}\)

Xét \(\text{TS}=2x^2(x-3)-x(x-3)-15(x-3)\)

\(=(x-3)(2x^2-x-15)=(x-3)[2x(x-3)+5(x-3)]\)

\(=(x-3)(x-3)(2x+5)=(x-3)^2(2x+5)\)

Xét \(\text{MS}=3x^2(x-3)-10x(x-3)+3(x-3)\)

\(=(x-3)(3x^2-10x+3)=(x-3)[3x(x-3)-(x-3)]\)

\(=(x-3)(x-3)(3x-1)=(x-3)^2(3x-1)\)

Do đó:

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(x-3)^2(3x-1)}=\frac{2x+5}{3x-1}\)

DD
24 tháng 1 2021

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)

24 tháng 1 2021

Ta có tử bằng:2x3-7x2-12x+45

                    =(2x3-6x2)-(x2-3x)-(15x-45)

                    =2x2(x-3)-x(x-3)-15(x-3)

                    =(x-3)(2x2-x-15)

                    =(x-3)(2x2-6x+5x-15)

                   =(x-3)2(2x+5)                   (1)

Ta có mẫu bằng:3x3-19x2+33x-9

                        =(3x3-x2)-(19x2-6x)+(27x-9)

                        =x2(3x-1)-6x(3x-1)+9(3x-1)

                        =(3x-1)(x2-6x+9)

                        =(3x-1)(x-3)2                (2)

Thay (1) và (2) vào phân thức ,ta có:

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}=\frac{2x+5}{3x-1}\)

14 tháng 12 2019

Tử: \(2x^3-7x^2-12x+45\)
\(=2x^3-12x^2+5x^2+18x-30+45\)
\(=2x^3-12x^2+18x+5x^2-30x+45\)
\(=2x\left(x^2-6x+9\right)+5\left(x^2-6x+9\right)\)
\(=\left(2x+5\right)\left(x-3\right)^2\) \(\left(1\right)\)

Mẫu: \(3x^3-19x^2+33x-9\)

\(=3x^3-18x^2-x^2+27x+6x-9\)

\(=3x^3-18x^2+27x-x^2+6x-9\)

\(=3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)\)

\(=\left(3x-1\right)\left(x-3\right)^2\) \(\left(2\right)\)

Từ (1) và (2) ta được: \(\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)

(Nghĩ vậy chứ cũng không chắc lắm)

Đặt \(A=\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-6x+5x-15}{3x^2-x-9x+3}\)

\(=\frac{2x\left(x-3\right)+5\left(x-3\right)}{x\left(3x-1\right)-3\left(3x-1\right)}\)

\(=\frac{\left(x-3\right)\left(2x+5\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

@Băng Băng 2k6 Đúng rồi đấy ! Học giỏi lắm !

NV
24 tháng 11 2018

a/ \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\dfrac{2x^3-12x^2+18x+5x^2-30x+45}{3x^3-18x^2+27x-x^2+6x-9}\)

\(=\dfrac{2x\left(x^2-6x+9\right)+5\left(x^2-6x+9\right)}{3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)}=\dfrac{\left(2x+5\right)\left(x^2-6x+9\right)}{\left(3x-1\right)\left(x^2-6x+9\right)}\)

\(=\dfrac{2x+5}{3x-1}\)

b/ \(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\dfrac{x^3+3x^2+2x-2x^2-6x-4}{x^3+3x^2+2x+5x^2+15x+10}\)

\(=\dfrac{x\left(x^2+3x+2\right)-2\left(x^2+3x+2\right)}{x\left(x^2+3x+2\right)+5\left(x^2+3x+2\right)}=\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x+5\right)\left(x^2+3x+2\right)}\)

\(=\dfrac{x-2}{x+5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Lời giải:

ĐKXĐ:.........

a) \(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-(x^2-3x)-(15x-45)}{3x^3-9x^2-(10x^2-30x)+(3x-9)}\)

\(=\frac{2x^2(x-3)-x(x-3)-15(x-3)}{3x^2(x-3)-10x(x-3)+3(x-3)}=\frac{(x-3)(2x^2-x-15)}{(x-3)(3x^2-10x+3)}\)

\(=\frac{(x-3)[2x(x-3)+5(x-3)]}{(x-3)[3x(x-3)-(x-3)]}=\frac{(x-3)(x-3)(2x+5)}{(x-3)(x-3)(3x-1)}=\frac{2x+5}{3x-1}\)

b)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2(x+1)-4(x+1)}{x^3+x^2+7x^2+7x+10x+10}\)

\(=\frac{(x+1)(x^2-4)}{x^2(x+1)+7x(x+1)+10(x+1)}=\frac{(x+1)(x-2)(x+2)}{(x+1)(x^2+7x+10)}\)

\(=\frac{(x-2)(x+2)}{x^2+7x+10}=\frac{(x-2)(x+2)}{x(x+2)+5(x+2)}=\frac{(x-2)(x+2)}{(x+2)(x+5)}=\frac{x-2}{x+5}\)