K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

\(A=\left(1+5^2+5^4+...+5^{200}\right)\)

=>\(5^2.A=5^2.\left(1+5^2+5^4+...+5^{200}\right)\)

=>\(25A=5^2+5^4+5^8+...+5^{202}\)

=>\(25A-A=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)

=>\(24A=5^{202}-1\Rightarrow A=\frac{5^{202}-1}{24}\)

10 tháng 10 2020

1. Đặt A = 1 + 52 + 54 + ... + 5^200 

Ta có: 52A = 52 +  54 +  56 + ... + 5^202

25A - A = (52 + 54 + ... + 5202) - (1 + 52 + ... + 5200)

24A = 5202 - 1     =>    A = (5202 - 1) : 24 

2. Ta có : 777222 = (7772)111

                222777= (2227)11111

Vì 7772 < 2227 => (2227)111 > (7772)111 

    =>  222777 > 777222 

9 tháng 7 2015

chi lam duoc bai 2 thôi

kết qua la:(5^201-5)/4

28 tháng 9 2017

abc +acbbca

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)

11 tháng 7 2015

\(A=1+5+5^2+..+5^{49}+5^{50}\)

\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)

\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)

\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)

\(4A=0+0+...+0+5^{51}-1\)

\(4A=5^{51}-1\)

\(A=\frac{5^{51}-1}{4}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$

$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$

$\Rightarrow 5^2A-A=5^{202}-1$

$\Rightarrow 24A=5^{202}-1$

$\Rightarrow A=\frac{5^{202}-1}{24}$

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lơ giải:

$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$

$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$

$\Rightarrow 5^2A-A=5^{202}-1$

$\Rightarrow 24A=5^{202}-1$

$\Rightarrow A=\frac{5^{202}-1}{24}$