K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2015

dặt a=(7^3+2)(7^6+4)(7^12+16)(7^24+256)
(7^3-2)a=(7^3-2)(7^3+2)...........................

=>341a=[(7^3)^2-2^2](7^6+4)......

=>341a=(7^6-4)(7^6+4)(7^12+16)(7^24+256)
=>341a=[(7^6)^2-4^2](7^12+16)(7^24+256)
=>341a=(7^12-16)(7^12+16)(7^24+256)

=>341a=[(7^12)^2-16^2](7^24+256)

=>341a=(7^24-256)(7^24+256)

=>341a=(7^24)^2-256^2

làm đến đây bạn tự lấy máy tính tinh nha

4 tháng 7 2018

Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:

c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)

\(=2^{36}-1\)

b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)

\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)

\(=x^8.\left(-4\right)\)

4 tháng 7 2018

\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1\)

9 tháng 12 2019

\(A=7.\left(2^3+1\right).\left(2^6+1\right).\left(2^{12}+1\right).\left(2^{24}+1\right)\)

\(A=\left(2^3-1\right).\left(2^3+1\right).\left(2^6+1\right).\left(2^{12}+1\right).\left(2^{24}+1\right)\)

\(A=\left(2^6-1\right).\left(2^6+1\right).\left(2^{12}+1\right).\left(2^{24}+1\right)\)

\(A=\left(2^{12}-1\right).\left(2^{12}+1\right).\left(2^{24}+1\right)\)

\(A=\left(2^{24}-1\right).\left(2^{24}+1\right)\)

\(A=2^{48}-1.\)

Chúc bạn học tốt!

26 tháng 6 2018

Giải:

a) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=2^{32}-1\)

\(\Leftrightarrow M=\dfrac{2^{32}-1}{3}\)

Vậy ...

b) \(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^{16}-1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=7^{32}-1\)

\(\Leftrightarrow N=\dfrac{7^{32}-1}{3}\)

Vậy ...