K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

\(A=\sqrt{4+2\sqrt{3}}-\sqrt{13-4\sqrt{3}}\)

\(A=\sqrt{3+2\sqrt{3}+1}-\sqrt{12-4\sqrt{3}+1}\)

\(A=\sqrt{\left(\sqrt{3}\right)^2+2\times\sqrt{3}\times1+1^2}-\sqrt{\left(2\sqrt{3}\right)^2-2\times2\sqrt{3}\times1+1^2}\)

\(A=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(A=\sqrt{3}+1-2\sqrt{3}+1\)

\(A=2-\sqrt{3}\)

30 tháng 7 2018

\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có:

\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3B\sqrt[3]{25-52}\)

\(=10-9B\)

Giải PT: \(B^3+9B-10=0\Leftrightarrow B^3-1+9B-9=0\)\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+1\right)+9\left(B-1\right)=0\)

\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+10\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}B-1=0\\B^2+2B+1+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+1\right)^2=-9\left(L\right)\end{cases}}}\)

Vậy \(B=1\)

31 tháng 7 2018

À chết mình làm nhầm, phải là \(\left(B-1\right)\left(B^2+B+1\right)\) nha, \(\left(B-1\right)\left(B^2+B+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}B=1\\B^2+2.\frac{1}{2}B+\frac{1}{4}-\frac{1}{4}+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2+\frac{7}{4}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2=-\frac{7}{4}\left(L\right)\end{cases}}\)

22 tháng 7 2019

#)Giải :

\(B=\sqrt{4+2\sqrt{3}}-\sqrt{13-4\sqrt{3}}\)

\(B=\sqrt{3+2\sqrt{3}+1}-\sqrt{12-4\sqrt{3}+1}\)

\(B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(B=2-\sqrt{3}\)

23 tháng 6 2017

Biểu thức đã cho bằng:

\(\sqrt{12+4\sqrt{3}+1}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(2\sqrt{3}+1\right)^2}+\sqrt{3+2.\sqrt{3}+1}\)

\(=2\sqrt{3}+1+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=2\sqrt{3}+1+\sqrt{3}-1\)

\(=3\sqrt{3}\)

3 tháng 7 2015

\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

=\(\sqrt{5-\sqrt{13+2.\sqrt{4}\sqrt{3}}}+\sqrt{3+\sqrt{13+2.\sqrt{4}\sqrt{3}}}\)

=\(\sqrt{5-\sqrt{12+2\sqrt{12}.1+1}}+\sqrt{3+\sqrt{12+2\sqrt{12}.1+1}}\)

=\(\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

=\(\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)

=\(\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)

=\(\sqrt{4-\sqrt{4}\sqrt{3}}+\sqrt{4+\sqrt{4}\sqrt{3}}\)

=\(\sqrt{3-2\sqrt{3}.1+1}+\sqrt{3+2\sqrt{3}.1+1}\)

=\(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

=\(\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)

b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)

c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)

12 tháng 8 2018

\(A=\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)

\(=\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\frac{6}{\sqrt{3}}\)

\(=6-3\sqrt{3}+4+\sqrt{3}+\frac{6}{\sqrt{3}}\)

\(=10-2\sqrt{3}+\frac{6}{\sqrt{3}}\)

\(=\frac{10\sqrt{3}-6+6\sqrt{3}}{\sqrt{3}}\)

\(=\frac{16\sqrt{3}-6}{\sqrt{3}}\)

14 tháng 10 2021

\(2\sqrt{3}-\sqrt{13-4\sqrt{3}}=2\sqrt{3}-\sqrt{13-2.2\sqrt{3}}\)

\(=2\sqrt{3}-\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)

\(=2\sqrt{3}-\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-2\sqrt{3}+1=1\)

15 tháng 8 2019

Chọn đáp án C.

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

17 tháng 6 2023

\(\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{12-2.\sqrt{4}.\sqrt{3}+1}\)

\(=\sqrt{\sqrt{12^2}-2.\sqrt{1}.\sqrt{12}+\sqrt{1^2}}\)

\(=\sqrt{\left(\sqrt{12}-1\right)^2}\)

\(=\left|\sqrt{12}-1\right|\)

\(=\sqrt{12}-1\)

19 tháng 6 2023

ỏ mình cảm ơn ạaaa