
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2\left(2+\sqrt{3}\right)}\)
\(=\left(2\sqrt{3}+2-3-\sqrt{3}\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{3+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)|\sqrt{3}+1|\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}\right)^2-1^2\)
\(=3-1\)
\(=2\)

Đặt A= .....
A\(^2\)= \(2+\sqrt{3}\)+\(2-\sqrt{3}\)+ \(2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
A\(^2\)= 4 + \(2\sqrt{2^2-\left(\sqrt{3}\right)^2}\)
A\(^2\)= 4 + \(2\sqrt{4-3}\)
A\(^2\)= 4 +2=6
Vây A=\(\sqrt{6}\)

=\(\sqrt{3}-1+2-\) \(\sqrt{3}=1\)
b.=\(\frac{2+\sqrt{3}-2+\sqrt{3}}{2^2-3}=2\sqrt{3}\)

Đặt: \(P=\left(\sqrt{2+\sqrt{3}}-\sqrt{3+\sqrt{5}}\right)^2\)
=> \(2P=2\left(\sqrt{2+\sqrt{3}}-\sqrt{3+\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{2}.\sqrt{2+\sqrt{3}}-\sqrt{2}.\sqrt{3+\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{4+2\sqrt{3}}-\sqrt{6+2\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\right)^2\)
\(2P=\left(\left(\sqrt{3}+1\right)-\left(\sqrt{5}+1\right)\right)^2\)
\(2P=\left(\sqrt{3}-\sqrt{5}\right)^2=3+5-2\sqrt{15}=8-2\sqrt{15}\)
=> \(P=4-\sqrt{15}\)

1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
\(2\sqrt{2+\sqrt{3}}=\sqrt{8+4\sqrt{3}}=\sqrt{8+2\sqrt{12}}=\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}=\sqrt{6}+\sqrt{2}\)