Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=xy\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(xy-7\right)\)
\(A=27x^3+108x^2+144x+64\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.4+3.3x.4^2+4^3\)
\(=\left(3x+4\right)^3=\left(3.32+4\right)^3=100^3=1000000\)
\(a,=\dfrac{x+3+4x-3}{xy}=\dfrac{5x}{xy}=\dfrac{5}{y}\\ b,=\dfrac{x-2+4x-3}{x-1}=\dfrac{5\left(x-1\right)}{x-1}=5\\ c,=\dfrac{x^2+4-6x+5}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\\ d,=\dfrac{4-x^2+2x^2-2x+5-4x}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\)
a) \(\dfrac{5xy^2-x^2y+4xy^2+5x^2y}{3xy}=\dfrac{9xy^2+4x^2y}{3xy}=\dfrac{xy\left(9y+4x\right)}{3xy}=\dfrac{9y+4x}{3}\)
b) \(\dfrac{x+3+x-1+x+4}{x+2}=\dfrac{3x+6}{x+2}=\dfrac{3\left(x+2\right)}{x+2}=3\)
\(\dfrac{5xy^2-x^2y}{3xy}+\dfrac{4xy^2+5x^2y}{3xy}=\dfrac{5xy^2-x^2y+4xy^2+5x^2y}{3xy}=\dfrac{9xy^2+4x^2y}{3xy}=\dfrac{xy\left(9y+4x\right)}{3xy}=\dfrac{9y+4x}{3}\)
\(\dfrac{x+3}{x+2}+\dfrac{x-1}{x+2}+\dfrac{x+4}{x+2}=\dfrac{x+3+x-1+x+4}{x+2}=\dfrac{3x+6}{x+2}=\dfrac{3\left(x+2\right)}{x+2}=3\)
kết quả thôi nha không nó dài lắm:
e) =\(\dfrac{3}{2x}\)
f) =\(\dfrac{2x}{\left(x+2\right)\left(x-2\right)}\)
g) =\(\dfrac{2}{x+1}\)
h) =\(\dfrac{4x+5}{x+2}\)
b: \(=\dfrac{x+3+x-1+x+4}{x+2}=\dfrac{3x+6}{x+2}=3\)
\(a,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{3x^2}\\ b,=\dfrac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\\ d,=\dfrac{1}{\left(x+3\right)^2}-\dfrac{1}{\left(x-3\right)^2}+\dfrac{x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\dfrac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(c,Sửa:\dfrac{1}{4x+2}=\dfrac{x\left(2x-1\right)}{2x\left(2x+1\right)\left(2x-1\right)}\\ \dfrac{20}{4x^3-x}=\dfrac{40}{2x\left(2x+1\right)\left(2x-1\right)}\\ \dfrac{7}{2x^2+x}=\dfrac{7\left(2x-1\right)}{x\left(2x+1\right)\left(2x-1\right)}\\ d,\dfrac{x}{x-y};\dfrac{x^2-y^2}{x^2-2xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^2}=\dfrac{x+y}{x-y};x+y=\dfrac{x^2-y^2}{x-y}\\ e,\dfrac{x}{x+1}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)};\dfrac{x^2}{1-x}=\dfrac{-x^2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)};\dfrac{1}{x^2-1}=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)