K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

- Theo giả thiết  a,b>0  nên áp dụng bất đẳng thức Cô si ta được

                a^4+b^2\ge2a^2b\Rightarrow a^4+2ab^2+b^2\ge2a^2b+2ab^2

                                                 \Rightarrow a^4+2ab^2+b^2\ge2ab\left(a+b\right)

                                                 \Rightarrow\frac{1}{a^4+2ab^2+b^2}\le\frac{1}{2ab\left(a+b\right)},  (đẳng thức xảy ra khi và chỉ khi a=b)

- Tương tự                                   \frac{1}{a^2+2a^2b+b^4}\le\frac{1}{2ab\left(a+b\right)}    ,    (đẳng thức xảy ra khi và chỉ khi  a=b)

- Từ đó      Q\le\frac{1}{ab\left(a+b\right)}

- Giả thiết  \left(a+b\right)\left(a+b-1\right)=a^2+b^2 tương đương với a+b=2ab\Leftrightarrow ab=\frac{a+b}{2}(*)

- Do đó      Q\le\frac{2}{\left(a+b\right)^2}

  - Mà      ab\le\frac{\left(a+b\right)^2}{4}    nên   \frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge2  (do giả thiết  a,b>0 ).

- Vì vậy   Q\le\frac{2}{2^2} 

GTNN  là  \frac{1}{2} đạt khi và chỉ khi \left\{{}\begin{matrix}a=b\\a+b=2\end{matrix}\right.\Leftrightarrow a=b=1

   
10 tháng 2 2022

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)

2 tháng 3 2018

\(P=\frac{a^2}{a^3+abc}+\frac{b^2}{b^3+abc}+\frac{c^2}{c^3+abc}.\) " nhân cả tử cả mẫu cho a ,   b ,  c lần lượt

\(\frac{a^2}{a^3+abc}\le\frac{1}{4}\left(\frac{a^2}{a^3}+\frac{a^2}{abc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{a}{bc}\right)\left(cosishaw\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

từ đề bài ta suy ra

\(bc=\frac{a^2+B^2+c^2}{a};ac=\frac{a^2+B^2+c^2}{b};ab=\frac{a^2+b^2+c^2}{c}.\)

\(\frac{a}{bc}=\frac{a}{\frac{a^2+B^2+c^2}{a}}=\frac{a^2}{a^2+B^2+c^2}\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

từ đề bài suy ra tiếp 

\(a=\frac{a^2+b^2+c^2}{bc};\frac{1}{a}=\frac{1}{\frac{a^2+b^2+c^2}{bc}}=\frac{bc}{a^2+B^2+c^2}\) " tương tự với các số hạng 

suy ra 

\(P\le\frac{1}{4}\left(\frac{bc+ac+Ab}{a^2+b^2+c^2}+1\right)\)

\(bc+ac+ab\le a^2+B^2+c^2\left(cosi\right)\)

\(P\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)

max của P là 1/2

dấu = xảy ra khi a=b=c=3

thử thay vào ta được

\(\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}=\frac{a}{2a^2}+\frac{a}{2a^2}+\frac{a}{2a^2}=\frac{3}{2a}=\frac{3}{2.3}=\frac{1}{2}\) " đúng "

2 tháng 3 2018

sửa lại cái đề bài thành  \(a^2+b^2+c^2=abc\)  đi

không bọn não chó nó tích sai cho tao đấy dcmmm 

bọn ngu học :)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

22 tháng 1 2020

Bài toán quy về 2 bài toán nhỏ hơn!

Cho các số dương ab + bc +ca = 1. 

a) Tìm Max: \(M=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

(Lời giải tại: Câu hỏi của Nguyễn Linh Chi. Bài làm của anh Thắng, trong lời giải có phần giống với đề bên trên.)

b) Tìm Min: \(N=a^2+28b^2+28c^2\)

Có: \(N=\frac{1}{4}\left(2a-7b-7c\right)^2+\frac{63}{4}\left(b-c\right)^2+7\left(ab+bc+ca\right)\ge7\left(ab+bc+ca\right)=7\)

Từ đó tìm được \(P\le\frac{9}{4}-7=-\frac{19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

2 tháng 6 2020

Với ab + bc + ca = 1 và áp dụng BĐT AM - GM, ta được:

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)

\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{2\left(a+c\right)}{a+c}+\frac{b+c}{2\left(b+c\right)}}{2}=\frac{2+2+\frac{1}{2}}{2}=\frac{9}{4}\)(*)

Mặt khác, cũng theo AM - GM, ta có:

 \(\frac{a^2}{2}+\frac{49b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49b^2}{2}}=7ab\)(1)

\(\frac{a^2}{2}+\frac{49c^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49c^2}{2}}=7ac\)(2)

\(\frac{7}{2}\left(b^2+c^2\right)\ge\frac{7}{2}.2\sqrt{b^2c^2}=7bc\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{2a^2+56b^2+56c^2}{2}\ge7\left(ab+bc+ca\right)=7\)

hay \(a^2+28b^2+28c^2\ge7\)(**)

Từ (*) và (**) suy ra \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)

\(\le\frac{9}{4}-7=\frac{-19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

13 tháng 11 2017

\(b^4+c^4\ge\)\(b^3c+bc^3\) (bn tu cm nhé)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{bc\left(b^2+c^2\right)+a}=\frac{abc}{b^2c^2\left(b^2+c^2\right)+abc}=\frac{1}{b^2c^2\left(b^2+c^2\right)+1}=\)

\(\frac{a^2b^2c^2}{b^2c^2\left(b^2+c^2\right)+a^2b^2c^2}=\frac{a^2b^2c^2}{b^2c^2\left(a^2+b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)

ttu \(T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) dau = xay ra khi va chi khi a=b=c=1

9 tháng 8 2020

\(\Sigma\frac{a}{c^4+b^4+a}\le\Sigma\frac{a^2}{abc\left(c^2+b^2\right)+a^2}=1\)

6 tháng 7 2020

Đề thi tuyển sinh chuyên Khoa học tự nhiên-Đại Học quốc gia Hà Nội năm học 2017-2018

ta có: \(ab+bc+ca+abc=2\)

\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)=\left(1+a\right)+\left(1+b\right)+\left(1+c\right)\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)}+\frac{1}{\left(1+b\right)\left(1+c\right)}+\frac{1}{\left(1+c\right)\left(1+a\right)}=1\)

đặt \(x=\frac{1}{1+a};y=\frac{1}{1+b};z=\frac{1}{1+c}\Rightarrow xy+yz+xz=1\)

ta có \(P=\frac{a+1}{\left(a+1\right)^2+1}+\frac{b+1}{\left(b+1\right)^2+1}+\frac{c+1}{\left(c+1\right)^2+1}\)

\(=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}+\frac{\frac{1}{y}}{\frac{1}{y^2}+1}+\frac{\frac{1}{z}}{\frac{1}{z^2}+1}=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)

\(=\frac{x}{\left(x+y\right)\left(y+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+y\right)\left(z+x\right)}\)

\(=\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

mà \(9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+z+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\ge6xyz\)(đúng vì theo BĐT Cosi)

\(\Rightarrow P\le\frac{2}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4\left(x+y+z\right)}\le\frac{9}{4\sqrt{3}}=\frac{3\sqrt{3}}{4}\)

(vì \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\))

Vậy \(P_{max}=\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}-1\)