Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)
=> \(2ab=a+b\)
Mà \(2ab\le\frac{\left(a+b\right)^2}{2}\)
=> \(a+b\ge2\)
Ta có
\(a^4+b^2\ge2a^2b\)
\(b^4+a^2\ge2ab^2\)
Khi đó \(Q\le\frac{1}{2ab\left(a+b\right)}+\frac{1}{2ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)
Vậy \(MaxQ=\frac{1}{2}\)khi a=b=1
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)
Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)
Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)
Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}\)
\(\Leftrightarrow\left[2-\frac{b\left(2a-b\right)}{a\left(b+c\right)}\right]+\left[2-\frac{c\left(2b-c\right)}{b\left(c+a\right)}\right]+\left[2-\frac{a\left(2c-a\right)}{c\left(a+b\right)}\right]\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\ge\frac{9}{2}\)
Áp dụng BĐT Schwarz, ta có :
\(\frac{b^2}{a\left(b+c\right)}+\frac{c^2}{b\left(c+a\right)}+\frac{a^2}{c\left(a+b\right)}\ge\frac{\left(a+b+c\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)( 1 )
\(\frac{ac}{a\left(b+c\right)}+\frac{ab}{b\left(c+a\right)}+\frac{bc}{c\left(a+b\right)}=\frac{c^2}{c\left(b+c\right)}+\frac{a^2}{a\left(a+c\right)}+\frac{b^2}{b\left(a+b\right)}\) ( 2 )
\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ac}\)
Cộng ( 1 ) với ( 2 ), ta được :
\(\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\)
\(\ge\left(a+b+c\right)^2\left(\frac{1}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2+ab+bc+ac}\right)\)
\(\ge\left(a+b+c\right)^2\left(\frac{\left(1+2\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}\right)=\frac{9}{2}\)
không biết cách này ổn không
Ta có : \(\frac{b\left(2a-b\right)}{a\left(b+c\right)}=\frac{2-\frac{b}{a}}{\frac{c}{b}+1}\) ; tương tự :...
đặt \(\frac{a}{c}=x;\frac{b}{a}=y;\frac{c}{b}=z\Rightarrow xyz=1\)
\(\Sigma\frac{2-y}{z+1}\le\frac{3}{2}\)
\(\Leftrightarrow2\Sigma xy^2+2\Sigma x^2+\Sigma xy\ge3\Sigma x+6\)( quy đồng khử mẫu )
\(\Leftrightarrow\Sigma\frac{x}{y}\ge\Sigma x\)( xyz = 1 ) ( luôn đúng )
\(\Rightarrowđpcm\)
Đặt \(x=\frac{2}{a};\) \(y=\frac{4}{b};\) \(z=\frac{1}{c}\)
(Vì \(a,b,c\in R^+\) nên suy ra \(x,y,z>0\) )
Khi đó, điều kiện (giả thiết) đã cho trở thành \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\) \(\left(\text{*}\right)\)
Với điều kiện mà \(x,y,z\) nhận được trên thì ta dễ dàng chứng minh được:
\(x^3+y^3\ge xy\left(x+y\right)\)
Do đó, \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)
Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là \(x,y>0\), ta có đánh giá sau: \(\frac{x}{y}+\frac{y}{x}\ge2\)
nên \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)
\(\Rightarrow\) \(0< \frac{x+y}{z}\le2\)
\(--------------\)
Ta có:
\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)
\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)
Tóm lại: \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)
\(--------------\)
Đặt \(t=\frac{x+y}{z}\) \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến \(t\) như sau:
\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)
\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\) \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(2a=b=4c\)
Vậy, \(P\) đạt giá trị nhỏ nhất là \(\frac{8}{3}\) khi \(2a=b=4c\)
Bài 1
*Chứng minh bằng AM-GM
Áp dụng bất đẳng thức AM-GM ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=b=c
Bài 1
*Chứng minh bằng Cauchy-Schwarz
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
- Theo giả thiết a,b>0a,b>0 nên áp dụng bất đẳng thức Cô si ta được
a^4+b^2\ge2a^2b\Rightarrow a^4+2ab^2+b^2\ge2a^2b+2ab^2a4+b2≥2a2b⇒a4+2ab2+b2≥2a2b+2ab2
\Rightarrow a^4+2ab^2+b^2\ge2ab\left(a+b\right)⇒a4+2ab2+b2≥2ab(a+b)
\Rightarrow\frac{1}{a^4+2ab^2+b^2}\le\frac{1}{2ab\left(a+b\right)}⇒a4+2ab2+b21≤2ab(a+b)1, (đẳng thức xảy ra khi và chỉ khi a=ba=b)
- Tương tự \frac{1}{a^2+2a^2b+b^4}\le\frac{1}{2ab\left(a+b\right)}a2+2a2b+b41≤2ab(a+b)1 , (đẳng thức xảy ra khi và chỉ khi a=ba=b)
- Từ đó Q\le\frac{1}{ab\left(a+b\right)}Q≤ab(a+b)1
- Giả thiết \left(a+b\right)\left(a+b-1\right)=a^2+b^2(a+b)(a+b−1)=a2+b2 tương đương với a+b=2ab\Leftrightarrow ab=\frac{a+b}{2}a+b=2ab⇔ab=2a+b(*)
- Do đó Q\le\frac{2}{\left(a+b\right)^2}Q≤(a+b)22
- Mà ab\le\frac{\left(a+b\right)^2}{4}ab≤4(a+b)2 nên \frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge22a+b≤4(a+b)2⇒a+b≥2 (do giả thiết a,b>0a,b>0 ).
- Vì vậy Q\le\frac{2}{2^2}Q≤222
GTNN là \frac{1}{2}21 đạt khi và chỉ khi \left\{{}\begin{matrix}a=b\\a+b=2\end{matrix}\right.{a=ba+b=2\Leftrightarrow a=b=1⇔a=b=1
Áp dụng BĐT AM-GM ta có:
\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)
\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)
\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)
Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)
\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)
\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)
Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=1\)