Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
a)
Do ∠zAx' = ∠ABy' (giả thiết)
Mà 2 góc ở vị trí so le trong
⇒ Ax' // By
Hay xx' // yy' (Do A ∈ xx' , B ∈ yy')
b)
Ta có: xx' // yy' (chứng minh trên)
⇒ ∠xAB = ∠ ABy' (2 góc so le trong)
Mà At là tia phân giác ∠xAB (giả thiết)
Bt' là tia phân giác ∠ABy' (giả thiết)
⇒ ∠tAB = ∠ABt'
Mà 2 góc ở vị trí so le trong
⇒ At // Bt'
@ Trịnh Xuân Hợp :
Bài của bạn sai mà mình làm xong bài này lâu rồi
Bài này nên tính bằng cách :
Chứng minh góc mAB = x'AB : 2 = yBA : 2 = nBA
=> mAB = nBA dựa vào quan hệ so le trong => Am // Bn
b) Tương tự như phần a , ta chứng minh ngược lại của phần a
Kéo dài BO cắt Dy tại N
\(\Rightarrow\widehat{ABN}=\widehat{BNC}=60^o\) (góc so le trong)
Xét tg ONC có
\(\widehat{NOC}=180^o-\left(\widehat{BNC}+\widehat{OCN}\right)=180^o-\left(60^o+30^o\right)=90^o\Rightarrow OB\perp OC\)
A O x y t 80 M 100 B Z
Nhận thấy : \(\widehat{xOy}+\widehat{OAt}=100^{\text{o}}+80^{\text{o}}=180^{\text{o}}\)
=> Oy // At
mà M \(\in Oy\)
=> OM // At
2) Xét tam giác AMB vuông tại B có
\(\widehat{MAB}+\widehat{AMB}=90^{\text{o}}\)
<=> \(\widehat{AMB}=90^{\text{o}}-\widehat{MAB}=90^{\text{o}}-50^{\text{o}}=40^{\text{o}}\)
3) \(\widehat{OMA}=\widehat{MAB}=50^{\text{o}}\left(2\text{ góc slt}\right)\)
Xét tam giác OMZ vuông tại Z
=> \(\widehat{OMZ}+\widehat{MOZ}=90^{\text{o}}\Rightarrow\widehat{MOZ}=90^{\text{o}}-\widehat{OMZ}=90^{\text{o}}-50^{\text{o}}=40^{\text{o}}=\frac{1}{2}\widehat{O}\)
=> OZ là tia phân giác của \(\widehat{O}\)