Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x' x A B D M C
a) Hai tam giác vuông AMC và BMC có:
AM = BM (vì M là trung điểm của AB)
\(\widehat{AMC}=\widehat{BMC}=90^o\left(vi,x'x\perp AB\right)\)
MC là cạnh chung.
Vậy \(\Delta AMC=\Delta BMC\left(c.g.c\right)\)
Suy ra AC = CB
b. Do \(\Delta AMC=\Delta BMC\)nên ta còn có:
\(\widehat{ACM}=\widehat{BCM}\)
Góc ACM kề bù với góc ACD, góc BCM kề bù với góc BDC.
\(\widehat{ACD}=180^o-\widehat{AMC}va\widehat{BCD}=180^o-\widehat{BCM}\)
Suy ra \(\widehat{ACD}=\widehat{BCD}\)
Hai tam giác ACD và BCD có:
AC = BC(câu a)
\(\widehat{ACD}=\widehat{BCD}\)(chứng minh trên)
CD là cạnh chung.
Vậy \(\Delta ACD=\Delta BCD\left(c.g.c\right)\)
c)Từ hai tam giác bằng nhau ACD và BCD ta suy ra:
\(\widehat{AD}=\widehat{BD}\)là \(\widehat{ADC}=\widehat{BDC}\)hay \(\widehat{ADE}=\widehat{BDE}\)
Hai tam giác ADE và BDE có:
\(AD=BD,\widehat{ADE}=\widehat{BDE},DE\)là cạnh chung
Vậy \(\Delta ADE=\Delta BDE\left(c.g.c\right)\)
Suy ra: \(\widehat{EAD}=\widehat{EBD}\)
Tự vẽ hình nha
a,Xét hai tam giác CAM và CMB
Ta có:MA=MB(M là trung điểm)
CM là cạnh chung
góc CMB=góc CMA
Vậy tam giác CMB và CMA bằng nhau
Suy ra AC=BC(2 cạnh tương ứng)
b,Từ tam giác CMB và CMA bằng nhau
suy ra CA=CB(cạnh tương ứng)
,Xét hai tam giác ACD và BCD
DC là cạnh chung
AC=CB(chứng minh trên)
góc ADC=góc BDC
Suy ra tam giác ACD =tam giác BCD