K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

TÔI CHƯA GIẢI ĐƯỢC

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!

5 tháng 5 2019

Sử dụng bất đẳng thức: 

\(x^3+y^3\ge3xy\left(x+y\right)\)

Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)

\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)

Vậy Max M=2018 khi x=y=z=1

5 tháng 5 2019

Sửa lại \(x^3+y^3\ge xy\left(x+y\right)\)

Xin lỗi

17 tháng 7 2019

Từ \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

Suy ra: x=y=z

\(\Rightarrow3x^{2018}=3y^{2018}=3z^{2018}=27^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=y^{2018}=z^{2018}=3^{2018}\)

\(\Rightarrow x,y,z=3\)

Dễ tính A

17 tháng 7 2019

Cảm ơn bạn nhé ,,....