Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)
\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)
\(=\dfrac{1}{2}x^4y^4\)
b: Hệ số là 1/2
Biến là \(x^4;y^4\)
bậc là 4+4=8
c: Thay x=-1 và y=-2 vào M, ta được:
\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)
- Ta có: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+y^2+2xy=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
- CMT2: \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2zx\)
- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P
- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)
- Đặt \(a=x^3+y^3+z^3\)
- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)
\(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)
- Mặt khác: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a
- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)
- Thay \(a=3xyz\)vào đa thức P
- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)
Vậy \(P=-\frac{3}{2}\)
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
Trả lời :
Bạn tham khảo bài làm và cách làm của mình tại link này nha :
https://olm.vn/hoi-dap/detail/252958431592.html
Chúc bạn học tốt !
\(Q=10xy^2-\frac{3}{7}xy-8xy^2-\frac{4}{7}xy-y\)
a) \(Q=\left(10xy^2-8xy^2\right)+\left(-\frac{3}{7}xy-\frac{4}{7}xy\right)-y\)
\(Q=2xy^2-xy-y\)
b) Chỗ này sửa thành Q nhá
Thay x = -7 ; y = -2 vào Q ta được :
\(Q=2\cdot\left(-7\right)\cdot\left(-2\right)^2-\left(-7\right)\cdot\left(-2\right)-\left(-2\right)\)
\(Q=2\cdot\left(-7\right)\cdot4-14+2\)
\(Q=-56-14+2\)
\(Q=-68\)
Vậy giá trị của Q = -68 khi x = -7 ; y = -2