Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)
\(=2y^2+4y-x^2-7x+2\)
Thay `x = 2` và `y = -1` vào `A + B` ta được:
\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)
b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)
\(=3x^2+3x-4y^2+2y-4\)
Thay `x = -2` và `y = 1` vào `A - B` ta được:
\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)
a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)
\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)
\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)
Để H có bậc là 6 thì 6-A=0
=>A=6
b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)
\(=3x^4y^2+3x^2y^2\)
\(=3x^2y^2\left(x^2+1\right)\)
\(x^2+1>1>0\forall x\ne0\)
\(x^2>0\forall x\ne0\)
\(y^2>0\forall y\ne0\)
Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>H luôn dương khi x,y khác 0