Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Để ĐTHS có cực đại và cực tiểu thì \(y'=3x^2+2x+m+2=0\) có hai nghiệm phân biệt
\(\Leftrightarrow \Delta'=1-3(m+2)>0\Leftrightarrow m<\frac{-5}{3}\)
2.
ĐTHS có hai cực trị nằm về hai phía trục tung nghĩa là PT \(y'=3x^2+2x+m+2=0\) có hai nghiệm $x_1,x_2$ trái dấu.
Theo định lý Viete thì \(x_1x_2=\frac{m+2}{3}<0\Leftrightarrow m<-2\)
3. Áp dụng định lý Viete:
Cực trị với hoành độ âm thì: \(\left\{\begin{matrix} x_1+x_2=\frac{-2}{3}<0\\ x_1x_2=\frac{m+2}{3}>0\end{matrix}\right.\Leftrightarrow m>-2\Rightarrow -2< m<\frac{-5}{3}\)
4. Để ĐTHS có cực tiểu tại $x=2$ thì PT \(y'=3x^2+2x+m+2=0\) nhận $x=2$ là nghiệm \(\Leftrightarrow m=-18\)
Thử lại bằng bảng biến thiên ta thấy đúng.
Lời giải:
Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)
Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)
a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)
Thử lại: \(y'=2x^2-2x\)
\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$
Vậy $m=2$
b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)
\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$
Vậy không tồn tại $m$ thỏa mãn.
c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.
Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt
Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)
d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$
Với ĐKXĐ như phần c, áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)
Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)
Mà \(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)
Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)
Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$
TXD D=R
y'=3x^2-2mx+m-2/3.
nếu hs đạt cực tiểu tại x=1 thì y'(1)=0
<=>3-2m+m-2/3=0<=>m=7/3
khi m=7/3 thì y'=3x^2-14/3x+5/3=0 y''=6x-14/3
ta có y'=0<=>x=1 hoặc x=5/9 =>y''(1)=6-14/3=4/3 >0
vậy tại m=7/3 là điểm cực tiểu tại x=1
Lời giải:
Hàm \(y=x^3+mx^2+nx+3m+2\) đạt cực tiểu khi $x=-1$ thì phương trình \(y'=3x^2+2mx+n=0\) nhận \(x=-1\) là nghiệm
\(\Rightarrow 3-2m+n=0(1)\)
Mặt khác
\(y(-1)=-1+m-n+3m+2=1+4m-n=4\Leftrightarrow 4m-n=3(2)\)
Từ \((1),(2)\Rightarrow \)\(\left\{\begin{matrix} m=0\\ n=-3\end{matrix}\right.\)
y =x^3 +mx^2 +nx +3m +2
y' =3x^2 +2mx +n
y''=6x +2mx +n
(đk1)f' (-1) =0 => 3.(-1)^2+2m.(-1) +n =0 <=> 2m -n-3 =0
(đk2).D= m^2 -3n>0
(đk 3) f''(-1) >0 => 6.(-1) +2m(-1) +n>0
(dk4) f(-1) =4 => -1 +m-n+3m+2 =4
<=> hệ
2m -n-3 =0 (1)
m^2 -3n>0 (2)
2m -n +6<0 (3)
4m -n +1 =4 (4)
từ (1) và (4) 2m =6 => m =0; n =-3
thay vào (2) => -3.(-3) >0 nhận
thay vào (3) => 3+6 =>0 => loại
kết luận không có m,n thỏa mãn.
ta có y'=3x^2-m
để hs có cực trị thì y'=0 có nghiệm phân biệt <=>3x^2-m=0<=>x^2=m/3<=>m/3>0 =>m>0
vậy với m>0 thì hs có cực trị
\(y=x^3-mx^2+\left(1-2m\right)x+1\)
\(y'=3x^2-2mx+1-2m\)
Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).
Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)
Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì:
\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).
Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt.