Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt hoành độ giao điểm : x 3 - 2x2 + 2x +1 = 1 -x
⇔ x = 0
Thay x=0 vào pt đường cong ⇒ y=1
⇒ giao điểm là (0;1) ⇒ có một giao điểm
\(4=2^x+2^y\ge2\sqrt{2^{x+y}}=2.2^{\frac{x+y}{2}}\)
\(\Rightarrow\frac{x+y}{2}\le1\Rightarrow x+y\le2\Rightarrow xy\le1\)
\(P=4x^2y^2+2x^3+2y^3+10xy\)
\(P=4x^2y^2+10xy+2\left(x+y\right)^3-6xy\left(x+y\right)\)
\(P=4x^2y^2-2xy+16=2\left(xy-1\right)\left(2xy+1\right)+18\)
Do \(xy\le1\Rightarrow2\left(xy-1\right)\left(2xy+1\right)\le0\Rightarrow P\le18\)
\(\Rightarrow P_{max}=18\) khi \(x=y=1\)
Câu đầu tìm m để ĐTHS làm sao bạn?
2.
\(x=1\) là TCĐ của ĐTHS \(\frac{mx^2-3x}{x-1}=0\) khi và chỉ khi \(mx^2-3x=0\) không có nghiệm \(x=1\)
\(\Leftrightarrow m.1^2-3.1\ne0\Leftrightarrow m\ne3\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((2x^2+3y^2)\left(\frac{1}{2}+\frac{4}{3}\right)\geq (x+2y)^2\)
\(\Leftrightarrow \frac{22}{3}\geq (x+2y)^2\Leftrightarrow x+2y\leq \sqrt{\frac{22}{3}}\)
Vậy \((x+2y)_{\max}=\sqrt{\frac{22}{3}}\)
Dấu bằng xảy ra khi \((x,y)=\left (\sqrt{\frac{6}{11}},4\sqrt{\frac{2}{33}}\right)\)
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?
a/ \(y'=18x-42x^5+7x^4=0\)
\(\Leftrightarrow x\left(42x^4-7x^3-18\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\42x^4-7x^3-18=0\end{matrix}\right.\)
Nói chung là ko giải được pt dưới nên nhường thầy giáo ra đề tự xử
b/ \(y'=\frac{4}{\left(x+2\right)^2}>0\) \(\forall x\ne-2\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-2\right)\) và \(\left(-2;+\infty\right)\)
c/ \(y'=\frac{\left(4x+3\right)\left(2x+1\right)-2\left(2x^2+3x\right)}{\left(2x+1\right)^2}=\frac{4x^2+4x+3}{\left(2x+1\right)^2}=\frac{\left(2x+1\right)^2+2}{\left(2x+1\right)^2}>0\) \(\forall x\ne-\frac{1}{2}\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\) và \(\left(-\frac{1}{2};+\infty\right)\)
d/ \(y'=\frac{x^2-2x-\left(2x-2\right)\left(x-1\right)}{\left(x^2-2x\right)^2}=\frac{-x^2+2x-2}{\left(x^2-2x\right)^2}=\frac{-\left(x-1\right)^2-1}{\left(x^2-2x\right)^2}< 0\) \(\forall x\ne\left\{0;2\right\}\)
\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;0\right)\) và \(\left(0;2\right)\) và \(\left(2;+\infty\right)\)
e/ \(y'=\frac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\frac{1-x}{\sqrt{2x-x^2}}=0\Rightarrow x=1\)
\(y'>0\) khi \(0< x< 1\); \(y'< 0\) khi \(1< x< 2\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)