K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

pt hoành độ giao điểm : x 3 - 2x2 + 2x +1 = 1 -x

⇔ x = 0

Thay x=0 vào pt đường cong ⇒ y=1

⇒ giao điểm là (0;1) ⇒ có một giao điểm

NV
15 tháng 10 2020

1.

Pt hoành độ giao điểm: \(\frac{2x-3}{x+3}=x-1\)

\(\Leftrightarrow2x-3=x^2+2x-3\)

\(\Leftrightarrow x=0\Rightarrow y=-1\)

Vậy tung độ giao điểm là \(-1\)

2.

\(y'=4x^3+4x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=8\\y\left(1\right)=3\end{matrix}\right.\)

Pttt: \(y=8\left(x-1\right)+3=8x-5\)

3.

\(y'=3x^2-6x\)

Lấy y chia y' và lấy phần dư ta được pt đường thẳng là: \(y=-2x+1\)

NV
10 tháng 5 2020

d.

\(\lim\limits_{x\rightarrow\infty}\frac{2x+1}{x+1}=2\Rightarrow y=2\) là TCN của (C)

Diện tích:

\(S=\int\limits^3_1\left(2-\frac{2x+1}{x+1}\right)dx=\int\limits^3_1\frac{1}{x+1}dx=ln\left|x+1\right||^3_1=ln4-ln2=ln2\)

e.

Pt hoành độ giao điểm:

\(2-x^2=x\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Diện tích:

\(S=\int\limits^1_{-2}\left(2-x^2-x\right)dx=\left(2x-\frac{1}{3}x^3-\frac{1}{2}x^2\right)|^1_{-2}=\frac{9}{2}\)

NV
10 tháng 5 2020

a. Pt hoành độ giao điểm: \(\frac{e^x\left(1+x\right)}{1+xe^x}=0\Rightarrow x=-1\)

Diện tích:

\(S=\int\limits^0_{-1}\frac{e^x+xe^x}{1+xe^x}dx\)

Đặt \(1+xe^x=t\Rightarrow\left(e^x+xe^x\right)dx=dt\) ; \(\left\{{}\begin{matrix}x=-1\Rightarrow t=1-\frac{1}{e}\\x=0\Rightarrow t=1\end{matrix}\right.\)

\(S=\int\limits^1_{1-\frac{1}{e}}\frac{dt}{t}=ln\left|t\right||^1_{1-\frac{1}{e}}=-ln\left|\frac{e-1}{e}\right|=ln\left(\frac{e}{e-1}\right)\)

b. Đồ thị \(y=3^x\) ko cắt trục hoành

Diện tích:

\(S=\int\limits^2_03^xdx=\frac{3^x}{ln3}|^2_0=\frac{9}{ln3}-\frac{1}{ln3}=\frac{8}{ln3}\)

c.

Pt hoành độ giao điểm:

\(x^4-4x^2+4=x^2\Leftrightarrow x^4-5x^2+4=0\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Diện tích:

\(S=\int\limits^1_0\left(x^4-4x^2+4-x^2\right)dx=\int\limits^1_0\left(x^4-5x^2+4\right)dx\)

\(=\left(\frac{1}{5}x^5-\frac{5}{3}x^3+4x\right)|^1_0=\frac{38}{15}\)

NV
18 tháng 3 2019

Gọi phương trình d có dạng \(y=kx+b\), do d qua A

\(\Rightarrow5=-k+b\Rightarrow b=k+5\)

\(\Rightarrow\) Phương trình d: \(y=kx+k+5\)

Phương trình hoành độ giao điểm d và (C):

\(-x^3+3x^2+1=kx+k+5\Leftrightarrow x^3-3x^2+4+k\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2+k\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left[\left(x-2\right)^2+k\right]=0\) (1)

Do (1) luôn có nghiệm \(x=-1\Rightarrow\) để d cắt (C) tại 3 điểm phân biệt thì phương trình \(\left(x-2\right)^2+k=0\) có 2 nghiệm phân biệt khác \(-1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(-1-2\right)^2+k\ne0\\\left(x-2\right)^2=-k\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ne-9\\-k>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ne-9\\k< 0\end{matrix}\right.\)

NV
7 tháng 10 2020

1.

Tiếp tuyến vuông góc với \(y=-x+2017\) nên có hệ số góc \(k=\frac{-1}{-1}=1\)

\(y'=3x^2-4x+2=1\)

\(\Rightarrow3x^2-4x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2=1+\frac{1}{3}=\frac{4}{3}\)

2.

Tiếp tuyến song song Ox nên có hệ số góc \(k=0\)

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

3.

\(y'=x^2+6x=-9\Rightarrow\left(x+3\right)^2=0\Rightarrow x=-3\Rightarrow y=16\)

Pt tiếp tuyến: \(y=-9\left(x+3\right)+16=-9x-11\)

4.

Tiếp tuyến vuông góc \(y=\frac{1}{9}x+2017\) có hệ số góc \(k=\frac{-1}{\frac{1}{9}}=-9\)

\(y'=-3x^2+6x=-9\Leftrightarrow3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Có 2 tiếp điểm nên có 2 tiếp tuyến thỏa mãn

NV
21 tháng 8 2020

\(y'=3x^2-2\left(m+2\right)x+m-1\)

\(\Delta'=\left(m+2\right)^2-3\left(m-1\right)=m^2+m+7>0;\forall m\)

Hàm luôn có CĐ-CT

Tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt đường thẳng d' đi qua CĐ-CT có dạng:

\(y=-\frac{2m^2+2m+14}{9}x+\frac{m^2+19m-11}{9}\)

\(\Leftrightarrow\left(2m^2+2m+14\right)x+9y-\left(m^2+19m-11\right)=0\)

\(\Rightarrow\) d' nhận \(\left(2m^2+2m+14;9\right)\) là 1 vtpt

Do d có 1 vtpt là \(\left(2;1\right)\) nên:

\(cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|2\left(2m^2+2m+14\right)+9\right|}{\sqrt{\left(2m^2+2m+14\right)^2+81}.\sqrt{5}}\)

Đặt \(2m^2+2m+14=t>0\)

\(\Rightarrow\frac{\left|2t+9\right|}{\sqrt{5t^2+405}}=\frac{\sqrt{3}}{2}\Leftrightarrow4\left(2t+9\right)^2=3\left(5t^2+405\right)\)

\(\Leftrightarrow t^2+144t-891=0\)

Nghiệm xấu quá, bạn tự hoàn thành :D

Chọn B