K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

dài quá, làm từ từ nhé

1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)

\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\left(a-2b\right)\)

2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)

\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)

7 tháng 8 2017

3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)

\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2-2x+1\right)\left(2x+1\right)\)

\(=\left(-x-1\right)\left(2x+1\right)\)

4, câu này đề thiếu

5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)

\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)

\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)

\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)

\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)

28 tháng 12 2017

1)Phân tích đa thức thành nhân tử

\(a,x^2+xy+3x+3y\)

\(=x\left(x+y\right)+3\left(x+y\right)\)

\(=\left(x+y\right)\left(x+3\right)\)

\(b,x^2-y^2+4x+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(c,x^3+x-y-y^3\)

\(=\left(x^3-y^3\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)

2) \(\dfrac{5}{x+5}-\dfrac{6}{5-x}+\dfrac{x^2+25}{x^2-25}\)

\(=\dfrac{5}{x+5}+\dfrac{6}{x-5}+\dfrac{x^2+25}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{6\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{x^2+25}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{5x-25+6x+30+x^2+25}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+11x+30}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+5x+6x+30}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{x+6}{x-5}\)

\(3,\dfrac{x}{x^2-4}+\dfrac{2}{x-2}+\dfrac{2}{x+2}\)

\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x+2x+4+2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x^2-4}\)

23 tháng 10 2021

Ta có \(\left(x+y\right)^2=x^2+2xy+y^2=49\Leftrightarrow xy=\dfrac{49-25}{2}=12\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=25^2-2\cdot12^2=337\)

Ta có \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3\cdot12\cdot7=91\)

\(\left(x^2+y^2\right)\left(x^3+y^3\right)=91\cdot25=2275\\ \Leftrightarrow x^5+y^5+2x^2y^2\left(x+y\right)=2275\\ \Leftrightarrow x^5+y^5=2275-2\cdot144\cdot7=259\)

10 tháng 9 2017

\(A=4y^2-\left(x^2-10x+25\right)\)

\(A=4y^2-\left(x-5\right)^2\)

\(A=\left(2y-x-5\right)\left(2y+x-5\right)\)

\(B=\left(x-4\right)^4-\left(x+a\right)^4\)

\(B=\left(\left(x-4\right)^2\right)^2-\left(\left(x+a\right)^2\right)^2\)

\(B=\left(\left(x-4\right)^2-\left(x+a\right)^2\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)

\(B=\left(x-4\right)\left(x+a\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)

\(C=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(C=\left(x^2+x\right)\left(x^2+x+2\right)+1\)

10 tháng 9 2017

\(A=\left(x^2-2xy+y^2\right)-4z^2\)

\(A=\left(x-y\right)^2-4z^2\)

\(A=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay x,y,z vào , ta dc;

\(A=\left(6-2-2.25\right)\left(6-2+2.25\right)\)

\(A=-2484\)( k bik bấm máy tính đúng k? bn kiểm tra lại nhé!)

2 tháng 9 2019

a, \(\frac{x+4}{x^2-1}-\frac{x-5}{x^2-x}\)

\(=\frac{x+4}{\left(x-1\right)\left(x+1\right)}-\frac{x-5}{x\left(x-1\right)}\)

\(=\frac{\left(x+4\right)\left(x^2-x\right)-\left(x-5\right)\left(x^2-1\right)}{\left(x-1\right)\left(x+1-x\right)}\)

\(=\frac{\left(x^3+4x^2-x^2-4x\right)-\left(x^3-5x^2-x+5\right)}{x^2-x+x-1-x^2+x}\)

\(=\frac{x^3+4x^2-x^2-4x-x^3-5x^2-x+5}{x-1}\)

\(=\frac{-2x^2-5x+5}{x-1}=\frac{-2x^2}{x-1}-\frac{5\left(x-1\right)}{\left(x-1\right)}=\frac{-2x^2}{x-1}-5\)

2 tháng 9 2019

bn ơi mình để ý kĩ thì dấu "=" thứ 4 của bạn chưa chuyển dấu

20 tháng 12 2021

Chọn B

24 tháng 6 2018

a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)

\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)