Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dài quá, làm từ từ nhé
1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)
\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\left(a-2b\right)\)
2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)
\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)
3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)
\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2-2x+1\right)\left(2x+1\right)\)
\(=\left(-x-1\right)\left(2x+1\right)\)
4, câu này đề thiếu
5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)
\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)
\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)
\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)
\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)
1)Phân tích đa thức thành nhân tử
\(a,x^2+xy+3x+3y\)
\(=x\left(x+y\right)+3\left(x+y\right)\)
\(=\left(x+y\right)\left(x+3\right)\)
\(b,x^2-y^2+4x+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(c,x^3+x-y-y^3\)
\(=\left(x^3-y^3\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)
2) \(\dfrac{5}{x+5}-\dfrac{6}{5-x}+\dfrac{x^2+25}{x^2-25}\)
\(=\dfrac{5}{x+5}+\dfrac{6}{x-5}+\dfrac{x^2+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{6\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{x^2+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{5x-25+6x+30+x^2+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+11x+30}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+5x+6x+30}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{x+6}{x-5}\)
\(3,\dfrac{x}{x^2-4}+\dfrac{2}{x-2}+\dfrac{2}{x+2}\)
\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x+2x+4+2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x^2-4}\)
Ta có \(\left(x+y\right)^2=x^2+2xy+y^2=49\Leftrightarrow xy=\dfrac{49-25}{2}=12\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=25^2-2\cdot12^2=337\)
Ta có \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3\cdot12\cdot7=91\)
\(\left(x^2+y^2\right)\left(x^3+y^3\right)=91\cdot25=2275\\ \Leftrightarrow x^5+y^5+2x^2y^2\left(x+y\right)=2275\\ \Leftrightarrow x^5+y^5=2275-2\cdot144\cdot7=259\)
\(A=4y^2-\left(x^2-10x+25\right)\)
\(A=4y^2-\left(x-5\right)^2\)
\(A=\left(2y-x-5\right)\left(2y+x-5\right)\)
\(B=\left(x-4\right)^4-\left(x+a\right)^4\)
\(B=\left(\left(x-4\right)^2\right)^2-\left(\left(x+a\right)^2\right)^2\)
\(B=\left(\left(x-4\right)^2-\left(x+a\right)^2\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)
\(B=\left(x-4\right)\left(x+a\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)
\(C=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(C=\left(x^2+x\right)\left(x^2+x+2\right)+1\)
a, \(\frac{x+4}{x^2-1}-\frac{x-5}{x^2-x}\)
\(=\frac{x+4}{\left(x-1\right)\left(x+1\right)}-\frac{x-5}{x\left(x-1\right)}\)
\(=\frac{\left(x+4\right)\left(x^2-x\right)-\left(x-5\right)\left(x^2-1\right)}{\left(x-1\right)\left(x+1-x\right)}\)
\(=\frac{\left(x^3+4x^2-x^2-4x\right)-\left(x^3-5x^2-x+5\right)}{x^2-x+x-1-x^2+x}\)
\(=\frac{x^3+4x^2-x^2-4x-x^3-5x^2-x+5}{x-1}\)
\(=\frac{-2x^2-5x+5}{x-1}=\frac{-2x^2}{x-1}-\frac{5\left(x-1\right)}{\left(x-1\right)}=\frac{-2x^2}{x-1}-5\)
bn ơi mình để ý kĩ thì dấu "=" thứ 4 của bạn chưa chuyển dấu
a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)
\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)