K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

\(x^4+x^3+x^2+x+3x+3=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+3\right)=0\Leftrightarrow x=-1\)

vì \(x^2+x+3=x^2+x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)

4 tháng 4 2021

pt <=> x3( x + 1 ) + x( x + 1 ) + 3( x + 1 ) = 0

<=> ( x + 1 )( x3 + x + 3 ) = 0

<=> x + 1 = 0 ( vì lí do gì đó mà mình k tìm đc nghiệm của cái kia =]] )

<=> x = -1

Vậy ...

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

13 tháng 1 2017

1. Ta có \(x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)+\left(x+3\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

Nếu x+3=0 =>x=-3

Nếu \(x^2+1=0\) =>x\(=\varnothing\) (vì \(x^2+1>0\))

Vậy x=-3

13 tháng 1 2017

2) đặt x^2+x+1 = t

=> x^2 +x +2 =t+1

pt => t(t+1)=2

t^2 + t -2 =0

\(\Rightarrow\left[\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

voi t=1 => x^2 +x+1=1

=> \(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

voi t=-2 => x^2+x+1=-2

=> x^2+x+3=0(vo nghiem)

cau 3 lam nhu cau 2

4) pt <=> (x^2-4)(x+3-x+1)=0

ban tu giai not nha

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

14 tháng 1 2018

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)

\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)

\(d,x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất x = -1

\(e,x^3-7x+6=0\)

\(\Leftrightarrow x^3-4x-3x+6=0\)

\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)

\(f,x^4-4x^3+12x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)

Vậy phương trình vô nghiệm

\(g,x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0

Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)

\(h,x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

10 tháng 1 2018

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

18 tháng 3 2020

rrrrrrrr\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc