K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

1. Ta có \(x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)+\left(x+3\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

Nếu x+3=0 =>x=-3

Nếu \(x^2+1=0\) =>x\(=\varnothing\) (vì \(x^2+1>0\))

Vậy x=-3

13 tháng 1 2017

2) đặt x^2+x+1 = t

=> x^2 +x +2 =t+1

pt => t(t+1)=2

t^2 + t -2 =0

\(\Rightarrow\left[\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

voi t=1 => x^2 +x+1=1

=> \(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

voi t=-2 => x^2+x+1=-2

=> x^2+x+3=0(vo nghiem)

cau 3 lam nhu cau 2

4) pt <=> (x^2-4)(x+3-x+1)=0

ban tu giai not nha

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

28 tháng 2 2016

Đây là giải phương trình nhé

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

13 tháng 7 2018

Mình giải từ cuối lên , mình giải dần -)

n,  <=> x(2x-1)-3(2x-1)=0

<=> (x-3)(2x-1)=0

<=> x= 3 hoặc x= 1/2

m, <=> (x+2)(x2-3x+5)-x2(x+2)=0

<=> (x+2)(x2-3x+5-x2)=0

<=> (x+2)(5-3x)=0

=> x= -2 hoặc5/3

13 tháng 7 2018

trả lời chi tiết giúp mình với

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)