Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2007x^2+2006x+2007\)
\(=x^4+2007x^2+2007x-x+2007\)
\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)
\(=x\left(x^3-1\right)+2007\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)
=x^4+2007x^2+2007x-x+2007
=(x^4-x)+(2007x^2+2007x+2007)
=x(x^3-1)+2007(x^2+x+1)
=x(x-1)(x^2+x+1)+2007(x^2+x+1)
=(x^2+x+1)(x(x-1)+2007)
=(x^2+x+1)(x^2-x+2007)
x4 + 2007x2 + 2006x + 2007
=x4-x3+2007x2+2017x+2017
=x.(x-1)(x2+x+1)+2007.(x2+x+1)
=(x2+x+1)(x2-x+2007)
a/ Đặt x+1= 2017
Ta có A = x6 - (x + 1)x5 + (x+1)x4 - (x +1)x3 + (x+1)x2 - (x +1)x + (x+1)
A= x6 - x6 - x5 + x5 +x4 - x4 -x3 + x3 + x2 - x2 -x +x +1
A= 1
k cho mình nha
B= x10 - (x+1)x9 + (x+1)x8 - (x+1)x7 + ..... +( x+1)x2 - (x+1)x
B= x10 - x10 - x9 + x9 + x8 - x8 - x7 + x7 +..... + x3 + x2 - x2 - x
B= -x
=> B= -2015
k cho mình
\(x^4+2002x^2+2001x+2002\)
\(=x^4+x^2+1+2001x^2+2001x+2001\)
\(=\left(x^4+2x^2+1\right)-x^2+2001\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2001\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+1-x+2001\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)
\(x^4+2007x^2-2006x+2007\)
\(=x^4+2x^2+1-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1+x\right)\left(x^2+1-x\right)+2006\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1+2006\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2007\right)\)
Vào câu hỏi này nè
https://olm.vn/hoi-dap/question/146868.html
Cho x+y+z=1 và x3+y3+z3=1
Tính A=x2007+y2007+z2007
\(x^4+4x^2-5=0\)
\(\Leftrightarrow x^4-x^2+5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)+5\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5=0\left(l\right)\\x=1\\x=-1\end{matrix}\right.\)
\(4\left(x+5\right)-3\left|2x-1\right|=0\)
\(\Leftrightarrow3\left|2x-1\right|=4\left(x+5\right)\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{4}{3}\left(x+5\right)\left(ĐK:x\ge-5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{4}{3}\left(x+5\right)\\2x-1=-\dfrac{4}{3}\left(x+5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{4}{3}x+\dfrac{20}{3}\\2x-1=-\dfrac{4}{3}x-\dfrac{20}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{23}{3}\\\dfrac{2}{3}x=-\dfrac{17}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{23}{2}\left(l\right)\\x=-\dfrac{17}{10}\left(n\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{17}{10}\)
12 = (x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = 1+ 2(xy + yz+ zx) => xy + yz + zx= 0
1 = (x+y+z)3 = (x + y)3 + z3 + 3(x+ y+z)z(x+ y) = x3 + y3 + z3 + 3xy(x+ y) + 3(x+ y)z
= 1 + 3xy(1 - z) + 3(xz + yz) = 1 - 3xyz + 3(xy + xz + yz) = 1 - 3xyz (do xy + xz + yz = 0 )
=> xyz = 0
+) 0 = (xy + yz + zx)2 = x2y2 + y2z2 + z2x2 + 2xyz. (y + x + z) = x2y2 + y2z2 + z2x2
=> x2y2 + y2z2 + z2x2 = 0 => xy = 0 và yz = 0 và zx = 0 => có 2 trong 3 số x; y; z = 0 và số còn lại bằng 1 (vì x + y + z = 1)
=> P = 1
\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)
⇔\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)
⇔ \(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)
⇔ x+2009=0
⇔ x=-2009
vậy x=-2009 là nghiệm của pt
a) ( x2 + x )2 + 4( x2 + x ) = 12
<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0
<=> ( x2 + x + 2)2 - 16 = 0
<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0
<=> ( x2 + x + 6 )( x2 + x - 2) = 0
Do : x2 + x + 6
= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\) > 0 ∀x
=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1) + 2( x - 1) = 0
<=> ( x - 1)( x + 2 ) = 0
<=> x = 1 hoặc : x = - 2
KL.....
b) Kuroba kaito làm rùi nhé
Phân tích đa thức thành nhân tử à bạn ?!
đúng r