Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt x+1= 2017
Ta có A = x6 - (x + 1)x5 + (x+1)x4 - (x +1)x3 + (x+1)x2 - (x +1)x + (x+1)
A= x6 - x6 - x5 + x5 +x4 - x4 -x3 + x3 + x2 - x2 -x +x +1
A= 1
k cho mình nha
B= x10 - (x+1)x9 + (x+1)x8 - (x+1)x7 + ..... +( x+1)x2 - (x+1)x
B= x10 - x10 - x9 + x9 + x8 - x8 - x7 + x7 +..... + x3 + x2 - x2 - x
B= -x
=> B= -2015
k cho mình
=x^4+2007x^2+2007x-x+2007
=(x^4-x)+(2007x^2+2007x+2007)
=x(x^3-1)+2007(x^2+x+1)
=x(x-1)(x^2+x+1)+2007(x^2+x+1)
=(x^2+x+1)(x(x-1)+2007)
=(x^2+x+1)(x^2-x+2007)
x4 + 2007x2 + 2006x + 2007
=x4-x3+2007x2+2017x+2017
=x.(x-1)(x2+x+1)+2007.(x2+x+1)
=(x2+x+1)(x2-x+2007)
\(x^4+2002x^2+2001x+2002\)
\(=x^4+x^2+1+2001x^2+2001x+2001\)
\(=\left(x^4+2x^2+1\right)-x^2+2001\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2001\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+1-x+2001\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)
\(x^4+2007x^2-2006x+2007\)
\(=x^4+2x^2+1-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1+x\right)\left(x^2+1-x\right)+2006\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1+2006\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2007\right)\)
\(x^4+2007x^2+2006x+2007\)
\(=x^4+2007x^2+2007x-x+2007\)
\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)
\(=x\left(x^3-1\right)+2007\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)