Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3-2x=0\Leftrightarrow x\left(x^2-2\right)=0\Leftrightarrow x=;x=\pm\sqrt{2}\)
b, \(x^2\left(x-3\right)+12-4x=0\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=\pm2;x=3\)
c, \(\left(x-2\right)^2=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x^2-2x-4\right)=0\Leftrightarrow\left(x-2\right)\left(-x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+6>0\right)=0\Leftrightarrow x=2\)
d, \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=3\)
e, \(x^3-4x^2+2x-1=0\Leftrightarrow x=3,5...\)
b, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = m
m2 + 3x.m + 2x2 = 0
\(\Leftrightarrow\) m2 + xm + 2x.m + 2x2 = 0
\(\Leftrightarrow\) (m2 + xm) + (2xm + 2x2) = 0
\(\Leftrightarrow\) m(m + x) + 2x(m + x) = 0
\(\Leftrightarrow\) (m + x)(m + 2x) = 0
Thay m = x2 + 4x + 8
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)(x2 + 6x + 8) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)][(x + 3)2 - 1] = 0
Vì (x + \(\frac{5}{2}\))2 \(\ge\) 0 với mọi x nên (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\) (x + 3)2 - 1 = 0
\(\Leftrightarrow\) (x + 3 - 1)(x + 3 + 1) = 0
\(\Leftrightarrow\) (x + 2)(x + 4) = 0
\(\Leftrightarrow\) x + 2 = 0 hoặc x + 4 = 0
\(\Leftrightarrow\) x = -2 và x = -4
Vậy S = {-2; -4}
Chúc bn học tốt!! (Xong 2 câu r, bn có thể tham khảo, câu trước mk đăng r)
a, 2x4 - 3x3 - 4x2 + 3x + 2 = 0
\(\Leftrightarrow\) 2x4 - 5x3 + 2x3 - 5x2 + x2 + 2x + x + 2 = 0
\(\Leftrightarrow\) (2x4 + 2x3) - (5x3 + 5x2) + (2x + 2) + (x2 + x) = 0
\(\Leftrightarrow\) 2x3(x + 1) - 5x(x + 1) + 2(x + 1) + x(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(2x3 - 5x + 2 + x) = 0
\(\Leftrightarrow\) (x + 1)(2x3 - 4x + 2) = 0
\(\Leftrightarrow\) 2(x + 1)(x3 - 2x + 1) = 0
\(\Leftrightarrow\) (x + 1)(x3 - 2x + 1 + x2 - x2) = 0
\(\Leftrightarrow\) (x + 1)[(x2 - 2x + 1) + (x3 - x2)] = 0
\(\Leftrightarrow\) (x + 1)[(x - 1)2 + x2(x - 1)] = 0
\(\Leftrightarrow\) (x + 1)(x - 1)(x2 + 1) = 0
Vì x2 \(\ge\) 0 với mọi x nên x2 + 1 > 0 với mọi x
\(\Rightarrow\) x + 1 = 0 hoặc x - 1 = 0
\(\Leftrightarrow\) x = -1 và x = 1
Vậy S = {-1; 1}
Câu b để mk suy nghĩ tiếp :))
Chúc bn học tốt!!
Lời giải:
Những bài này sử dụng những hằng đẳng thức đáng nhớ.
Vì $x=-2$ nên $x+2=0$. Ta có:
\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)
\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)
\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)
\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)
--------------------
\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)
\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)
----------------
Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$
\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)
\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)
\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)
\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)
ta có:
x2-4x+8=2x-1
=>x2-4x+8-(2x-1)=0
=>x2-6x+9=0
=>(x-3)2=0
=>x-3=0
=>x=3
\(x^2-4x+8=2x-1\)
\(\Rightarrow x^2-4x+8-2x+1=0\)
\(\Rightarrow x^2-6x+9=0\)
\(\Rightarrow\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(x^3+2x^2-4x+1\)
\(=\left(x^3+3x^2-x\right)-\left(x^2+3x-1\right)\)
\(=x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x-1\right)\left(x^2+3x-1\right)\)
c) cho da thuc P(x) =2x^4-7x^3 -2x^2 +13x +6? | Yahoo Hỏi & Đáp
Tham khảo
\(1.x^3+2x+x^2=x\left(x^2+x+2\right)\)
\(2.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
\(3.-3x^3-5x^2+8x=-3x^3+3x^2-8x^2+8x\)
\(=-3x^2\left(x-1\right)-8x\left(x-1\right)=\left(3x^2+8x\right)\left(1-x\right)\)
\(=x\left(3x+8\right)\left(1-x\right)\)
\(4.x^2+4x-5=x^2-x+5x-5=\left(x-1\right)\left(x+5\right)\)
\(5.6x^2-3x-3=6x^2-6x+3x-3=3\left(x-1\right)\left(2x+1\right)\)
\(6.3x^2-2x-5=3x^2+3x-5x-5=\left(x+1\right)\left(3x-5\right)\)
\(8.x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)\(=\left(x+2y\right)\left(x-y-2\right)\)
\(9.x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
\(10.x^2-y^2+6x+9=\left(x+3-y\right)\left(x+3+y\right)\)
Bài 1:
a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{2-u}{u+2}\)(1)
Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)
\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)
\(=\frac{-\left(u-2\right)}{u+2}\)
\(=\frac{2-u}{u+2}\)(2)
Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)
b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)
\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)
\(=v+3=VP\)(đpcm)
Bài 2:
a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)
\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow M=2x^2-3x+2x-3\)
hay \(M=2x^2-x-3\)
Vậy: \(M=2x^2-x-3\)
b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)
\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)
\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)
\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)
\(\Leftrightarrow M=2x^2-4x-x+2\)
hay \(M=2x^2-5x+2\)
Vậy: \(M=2x^2-5x+2\)
Bài 3:
a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)
\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)
hay \(N=x^2+3x+2\)
Vậy: \(N=x^2+3x+2\)
n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)
\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)
hay \(N=\frac{2x-6}{x+3}\)
Vậy: \(N=\frac{2x-6}{x+3}\)
Bài làm
x³ - 8 = 2x² - 4x
<=> x³ - 2x² + 4x - 8 = 0
<=> x²( x - 2 ) + 4( x - 2 ) = 0
<=> ( x - 2 )( x² + 4 ) = 0
<=> x - 2 = 0 hoặc x² + 4 = 0
<=> x = 2 hoặc x² = -4 ( vô lí )
Vậy x = 2 là nghiệp phương trình.
"nghiệp" :v