Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+y=u\)
Biểu thức trở thành \(u^2-8u+12\)
\(=u^2-2u-6u+12\)
\(=u\left(u-2\right)-6\left(u-2\right)\)
\(=\left(u-6\right)\left(u-2\right)\)
Thay ngược trở lại, ta được:
\(\left(x+y\right)^2-8\left(x+y\right)+12=\left(x+y-6\right)\left(x+y-2\right)\)
x3-x2+x+3=x3+1-x2+1+x+1
=(x+1)(x2+x+1)-(x2-1)+(x+1)
=(x+1)(x2+x+1)-(x+1)(x-1)+(x+1)
=(x+1)[(x2+x+1)-(x-1)+1]
=(x+1)(x2+x+1-x+1+1)
=(x+1)(x2+3)
ồ cuk dễ nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
\(x^2+x-6=x^2-2x+3x-6=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
x2 + x - 6
= x2 - 2x + 3x - 6
= x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x + 3 )
a) \(x^5+x+1=x^5+x^2-x^2+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
b) \(x^7+x^2+1=x^7+x^2-x+x+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5+x^2+1-x^4-x\right)\)
(Nếu đúng thì k cho mìk với nhé!)
\(x^2-2x-35\)
\(=x^2-2x+1-36\)
\(=\left(x-1\right)^2-36\)
\(=\left(x-1\right)^2-6^2\)
\(=\left(x-1-6\right)\left(x-1+6\right)\)
\(=\left(x-7\right)\left(x+5\right)\)
Ủng hộ mik nha
Thanks @@@@@@
\(2x-3x^2+x\)
\(=x\left(2-3x+1\right)\)
\(=x\left(-3x+3\right)\)
\(=-3x\left(x-1\right)\)
2x - 3x2 + x
=x.(2-3x+1)
=x.(3-3x)
=x.(3.(1-x))
=3x.(1-x)
\(x^2-y^2\)
\(=x^2+xy-xy-y^2\)
\(=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
x²-y²=(x+y)(x-y)