Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
3) \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)\)
\(=\left(ay+bx\right)\left(ax+by\right)\)
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
Bài 1
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^{2^2}-12x^2y^3\)
\(=(15x^2y^3-12x^2y^3)+(7x^2-12x^2)+(-8x^3y^2+11x^3y^2)\)
\(=3x^2y^3-5x^2+3x^3y^2\)
Bậc của hệ số cao nhất là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(=(3x^5y-\frac{1}{2}x^5y)+(\frac{1}{3}xy^4+2xy^4)+(\frac{3}{4}x^2y^3-x^2y^3)\)
\(=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Bậc của hệ số cao nhất là 6
Bài 2
\(a.A=5xy-y^2-2xy+4xy+3x-2y\)
\(=(5xy-2xy+4xy)-y^2+3x-2y\)
\(=7xy-y^2+3x-2y\)
\(b.B=\frac{1}{2}ab^2-\frac{1}{8}ab^2+\frac{3}{4}a^2b-\frac{3}{8}a^2b-\frac{1}{2}ab^2\)
\(=(\frac{1}{2}ab^2-\frac{1}{8}ab^2-\frac{1}{2}ab^2)+(\frac{3}{4}a^2b-\frac{3}{8}a^2b)\)
\(=-\frac{1}{8}ab^2+\frac{3}{8}a^2b\)
\(c.C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(=(2a^2b+5a^2b)+(-8b^2-3b^2)+(5c^2+4c^2)\)
\(=7a^2b-11b^2+9c^2\)
Bài 3
a. Thay x = 2 và y = 9 vào biểu thức A có
\(A=2.2^2-\frac{1}{3}.9\)
\(=8-3=3\)
Vậy giá trị biểu thức A = 3 khi x = 2 và y = 9
b.Thay a = -2 và b = -1/3 vào biểu thức B có
\(B=\frac{1}{2}.(-2)^2-3.(-\frac{1}{3})^2\)
\(=\frac{1}{2}.4-3.\frac{1}{9}\)
\(=2-3=-1\)
Vậy giá trị biểu thức B = -1 khi x = -2 và y = -1/3
c.Thay x = -1/2 và y = 2/3 vào biểu thức P có
\(P=2.(\frac{-1}{2})^2+3.\frac{-1}{2}.\frac{2}{3}+(\frac{2}{3})^2\)
\(=2.\frac{1}{4}-1+\frac{4}{9}\)
\(=\frac{1}{2}-\frac{5}{9}=\frac{-1}{18}\)
Vậy giá trị biểu thức P = -1/18 khi x = -1/2 và y = 2/3
d. Thay a = -1/3 và b = -1/6 vào biểu thức có
\(12.\frac{-1}{3}.(\frac{-1}{6})^2\)
\(=-4.\frac{1}{36}=\frac{-1}{9}\)
Vậy giá trị biểu thức bằng -1/9 khi a = -1/3 và b = -1/6
e.Thay x = 2 và y = 1/4 vào biểu thức có
\((\frac{-1}{2}.2.\frac{1^2}{4^2}).(\frac{2}{3}.2^3)\)
\(=-\frac{1}{16}.\frac{16}{3}=\frac{-1}{3}\)
Vậy giá trị biểu thức bằng -1/3 khi x = 2 và y = 1/4
Bài 4
\(a.(\frac{-1}{2}a^2)(-24a).(4m-n)\)
\(=\frac{-1}{2}.(-24).a^2.a.(4m-n)\)
\(=12a^3.(4m-n)\)
\(=48a^3m-12a^3n\)
\(b.(x^2)(x^3.2).(-1).(-3a)\)
\(=2.(-1).(-3).x^2.x^3.a\)
\(=6x^5a\)
Bài 5
\(a.\frac{1}{2}x^2(2x^2y^2z).(\frac{-1}{3}x^2y^3)\)
\(=\frac{1}{2}.2.(\frac{-1}{3}).x^2.x^2.x^2.y^2.y^3.z\)
\(=\frac{-1}{3}x^6y^5z\)
Bậc của đơn thức trên là 12
\(b.(-x^2y)^3.(\frac{1}{2}x^2y^3).(-2xy^2z)^2\)
\(=\frac{1}{2}.4.x^5.x^2.x^2.y^3.y^3.y^4.z^2\)
\(=2x^9y^{10}z^2\)
Bậc của đơn thức trên là 21
Bài 6
\(a.(-6x^3zy).(\frac{2}{3}yz)^2\)
\(=-6.\frac{4}{9}.x^3.y.y^2.z.z^2\)
\(=-\frac{8}{3}x^3y^3z^3\)
\(b.(xy-5x^2y^2+xy^2-xy^2)-(xy^2+3xy^2-9x^2y)\)
\(=-5x^2y^2+9x^2y-4xy^2+xy\)
Học tốt
\(x^2+2xy+x+2y\)
\(=x\left(x+1\right)+2y\left(x+1\right)\)
\(=\left(x+1\right)\left(2y+x\right)\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
a)x2+2xy+x+2y
=(2xy+x2)+(2y+x)
=x(2y+x)+(2y+x)
=(x+1)(2y+x)
b)7x2-7xy-5x+5y
=(5y-7xy)+(7x2-5x)
=y(5-7x)-x(5-7x)
=(5-7x)(y-x)
c)x2-6x+9-9y2
=(x2+3xy-3x)-(3xy+9y2-9y)-(3x+9y-9)
=x(x+3y-3)-3y(x+3y-3)-3(x+3y-3)
=(x-3y-3)(x+3y-3)
d)x3-3x2+3x-1+2(x2-x)
Ta thấy x=1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x-1
=(x-1)(x2+1)
e) (x+y)(y+z)(z+x)+xyz
đề sai
f)x(y2-z2)+y(z2-x2)
=(xy2+yz2)+(x2y+xz2)
=y(xy+z2)-x(xy+z2)
=(y-x)(xy+z2)
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(x^3-6x^2+12x-8=\left(x-2\right)^3\)
c) \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)
d) \(49-x^2+2xy-y^2=7^2-\left(x-y\right)^2=\left(7+x-y\right)\left(7-x+y\right)\)
a, =\(6\cdot\left(-2\right)^3-\left(-2\right)^{10}+4\cdot\left(-2\right)^3+\left(-2\right)^{10}-8\cdot\left(-2\right)^3+\left(-2\right)\)
= \(\left(-48\right)-1024+\left(-32\right)+1024-\left(-64\right)+\left(-2\right)\)
= \(\left(-18\right)\)
b, = \(4\cdot1^6\cdot\left(-1\right)^3-3\cdot1^6\cdot\left(-1\right)^3+2\cdot1^2\cdot\left(-1\right)^2-1^6\cdot\left(-1\right)^3-1^2\cdot\left(-1\right)^2+\left(-1\right)\)
= \(\left(-4\right)-\left(-3\right)+2-\left(-1\right)-1+\left(-1\right)\)
= 0
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(4x^4-21x^2y^2+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
ồ cuk dễ nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
tên quen quen bạn hay quay youtube à
giải hộ mik ik