Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)
Vậy Amin = -9/8 khi và chỉ khi x = -1/4
b) \(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)
Vậy Bmin = 1 khi và chỉ khi x = y = 0
a) \(A=2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Vậy GTNN của A = -9/2 khi x = 3/2.
b) \(B=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)
Vậy, GTNN của B = 3/4 khi x=1/2 và y=-3
a) \(A=-\left(x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2-\frac{1}{4}\right)\)
\(=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
Vậy GTLN của A là \(\frac{1}{4}\)khi \(x=\frac{1}{2}\)
b) \(B=-2\left(x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2+\frac{5}{2}-\frac{1}{4}\right)\)
\(=-\frac{9}{2}-2\left(x-\frac{1}{2}\right)^2\)
Vậy GTLN của B là \(-\frac{9}{2}\)khi \(x=\frac{1}{2}\)
Đề \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)\(\Leftrightarrow\left(5x^2-5x^2\right)+\left(x-15x-x\right)+\left(5+2\right)=0\)
\(\Leftrightarrow-15x+7=0\)\(\Leftrightarrow15x-7=0\)\(\Leftrightarrow15x=7\)\(\Leftrightarrow x=\frac{7}{15}\)
Vậy \(S=\frac{7}{15}\)