K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a/ Có thể là vô tỉ. Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)

b/ Không thể vì

Giả sử a, b là số vô tỷ

Nếu \(\frac{a}{b}\)là số hữu tỷ thì có dạng

\(\hept{\begin{cases}a=m.q\\b=n.q\end{cases}\left(m,n\in Q;q\in I\right)}\)

\(\Rightarrow a+b=m.q+n.q=q\left(m+n\right)\in I\)

Trái giả thuyết.

c/ Có thể Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)

18 tháng 7 2017

\(\orbr{\begin{cases}\\\end{cases}}\)

4 tháng 4 2017

Ta có \(\Delta=b^2-4ac=\left(a+c\right)^2-4ac=\left(a-c\right)^2\)

\(\Rightarrow x_1=\frac{-b+a-c}{2a};x_2=\frac{-b-a+c}{2a}\in Q.\)

28 tháng 8 2020

bạn tham khảo nhé :  https://olm.vn/hoi-dap/detail/106812735697.html

không hiện link thì mình gửi qua tin nhắn nhé

15 tháng 9 2019

Thấy bài này chưa ai lm đúng nên cho e ké ạ:((

Đặt \(a-b=c;b-c=y;c-a=z\) khi đó \(x+y+z=0\)

Ta có:\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}\)

\(\Rightarrow A^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}\)

\(\Rightarrow A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow A=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ.

23 tháng 5 2018

Đặt \(a-b=x;b-c=y\Rightarrow c-a=x-y\)

\(\Rightarrow\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}\)

\(=\sqrt{\frac{y^2\left(x+y\right)^2+x^2\left(x+y\right)^2+x^2y^2}{x^2y^2\left(x+y\right)^2}}=\sqrt{\frac{x^4+y^4+2xy^3+2x^3y+3x^2y^2}{x^2y^2\left(x+y\right)^2}}\)

\(=\sqrt{\frac{\left(x^2+y^2+xy\right)^2}{x^2y^2\left(x+y\right)^2}}=\left|\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right|\) là một số hữu tỉ (ĐPCM)

8 tháng 7 2015

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\) là số hữu tỉ

8 tháng 7 2015

\(A=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) thì phải?

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

23 tháng 9 2019

Câu hỏi của Phạm Quang Dương - Toán lớp 9 - Học toán với OnlineMath