Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{\left(ax+b\right)\left(x-1\right)+c\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}=\frac{x^2\left(a+c\right)+x\left(b-a\right)+c-b}{\left(x^2+1\right)\left(x-1\right)}\)
=> a+ c = 0 (1)
=> b - a = 0 (2)
=> c - b = 2 (3)
b - a = 0 => a = b Thay (1) ta có :
b + c = 0 Kết hợp với (3)
=> b + c + c - b = 2 + 0
=> 2c = 2
=> c = 1
=> b = c - 2 = 1 - 2 = -1 = a
Vậy a = b= -1 ; c = 1
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
Câu 1:ĐkXĐ \(x\ge-\frac{1}{4}\)
\(\left(2\sqrt{x+2}-\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)(theo đề ở dưới)
Nhân liên hợp ta có
\(\left(4\left(x+2\right)-4x-1\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)<=>\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)
Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t\left(t\ge0\right)\)
=> \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)
=> \(\frac{t^2-8x-9}{4}=\sqrt{4x^2+9x+2}\)
Khi đó (1)
<=> \(2x+3+\frac{t^2-8x-9}{4}=t\)
<=> \(\frac{3}{4}+\frac{t^2}{4}=t\)
=> \(\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)(tm)
+ \(t=1\) => \(\sqrt{4x^2+9x+2}=-2x-2\)
Mà \(x\ge-\frac{1}{4}\)
=> pt vô nghiệm
+ t=3 => \(\sqrt{4x^2+9x+2}=-2x\)
=> \(\left\{{}\begin{matrix}x\le0\\9x+2=0\end{matrix}\right.\)
=> \(x=-\frac{2}{9}\)(tmĐKXĐ)
Vậy x=-2/9
Câu 3:
\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)
<=> \(\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)
<=> \(\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)
<=> \(2abc+a^2+b^2+ab=abc^2\)
<=> \(\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)
<=> \(\left(a+b\right)^2=ab\left(c-1\right)^2\)
=> ab>0 , ab là bình phương của số hữu tỉ
=> \(c-1=\frac{a+b}{\sqrt{ab}}\)
=> \(c+1=\frac{a+b}{\sqrt{ab}}+2=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{ab}}\)
Khi đó
\(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\)là số hữu tỉ do ab là bình phương của số hữu tỉ
=> \(\frac{c-3}{c+1}\)là bình phương của số hữu tỉ(ĐPCM)