K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Đặt \(\left\{{}\begin{matrix}xy=a\\yz=b\\zx=c\end{matrix}\right.\)

Giả thiết \(\Leftrightarrow a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+) TH1: \(a+b+c=0\Leftrightarrow xy+yz+zx=0\)

Biến đổi linh tinh P chắc là ra :D

+) TH2: \(a=b=c\Leftrightarrow xy=yz=zx\Leftrightarrow x=y=z\)

\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}=\frac{2y}{y}\cdot\frac{2z}{z}\cdot\frac{2x}{x}=2\cdot2\cdot2=8\)

Vậy....

4 tháng 8 2019

TH1: \(xy+yz+zx=0\)

\(\Leftrightarrow z\left(x+y\right)=-xy\)

\(\Leftrightarrow x+y=\frac{-xy}{z}\)

Vì vai trò của x, y, z là như nhau nên ta cũng có :

\(\left\{{}\begin{matrix}y+z=\frac{-yz}{x}\\z+x=\frac{-zx}{y}\end{matrix}\right.\)

Ta có \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)

\(P=\frac{\frac{-xy}{z}\cdot\frac{-yz}{x}\cdot\frac{-zx}{y}}{xyz}\)

\(P=\frac{\frac{-x^2y^2z^2}{xyz}}{xyz}\)

\(P=\frac{-xyz}{xyz}=-1\)

Vậy....

23 tháng 12 2016

đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3

hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)

10 tháng 8 2019
  • Quẵng đường viên bi A dơi trong 4s là: \(S_{A\left(4s\right)}=\frac{1}{2}\cdot10\cdot4^2=80\left(m\right)\)
  • Vì sau khi bi A rơi được 4 giây thì khoảng cách giữa hai viên bi là 35m nên quãng đường bi B dơi là: \(S_{B\left(4-\Delta t\right)}=80-35=45\left(m\right)\)
  • Suy ra: \(S_{B\left(4-\Delta t\right)}=\frac{1}{2}\cdot10\cdot\left(4-\Delta t\right)^2=45\\ \Rightarrow\left(4-\Delta t\right)^2=9\\ \Rightarrow4-\Delta t=3\Rightarrow\Delta t=1\left(s\right)\)
AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Ta có:

\(x^3+y^3+z^3=3xyz\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

\(x+y+z\neq 0\Rightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\)

\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\). Dấu bằng xảy ra khi

\((x-y)^2=(y-z)^2=(z-x)^2=0\Leftrightarrow x=y=z\)

Khi đó:

\(P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+1)(1+1)(1+1)=8\)

3 tháng 1 2018

Xét hiệu

\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\\ =\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\\ =\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)

\(x+y+z⋮6\)

\(\Rightarrow x^3+y^3+z^3⋮6\)